Search results for: formal description techniques.
2567 SVPWM Based Two Level VSI for Micro Grids
Authors: P. V. V. Rama Rao, M. V. Srikanth, S. Dileep Kumar Varma
Abstract:
With advances in solid-state power electronic devices and microprocessors, various pulse-width-modulation (PWM) techniques have been developed for industrial applications. This paper presents the comparison of two different PWM techniques, the sinusoidal PWM (SPWM) technique and the space-vector PWM (SVPWM) technique applied to two level VSI for micro grid applications. These two methods are compared by discussing their ease of implementation and by analyzing the output harmonic spectra of various output voltages (line-to-neutral voltages, and line-to-line voltages) and their total harmonic distortion (THD). The SVPWM technique in the under-modulation region can increase the fundamental output voltage by 15.5% over the SPWM technique.
Keywords: SPWM, SVPWM, VSI, Modulation Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32292566 Design of a Neural Networks Classifier for Face Detection
Authors: F. Smach, M. Atri, J. Mitéran, M. Abid
Abstract:
Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.Keywords: Classification, Face Detection, FPGA Hardware description, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22812565 Detection of Breast Cancer in the JPEG2000 Domain
Authors: Fayez M. Idris, Nehal I. AlZubaidi
Abstract:
Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15772564 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design
Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham
Abstract:
Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.
Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16372563 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: Resistivity, inversion, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60732562 Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience
Authors: C. Li, G. Coates, N. Johnson, M. McGuinness
Abstract:
In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience.
Keywords: ABM, Flood response, SMEs, Business continuity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30482561 Methodologies, Systems Development Life Cycle and Modeling Languages in Agile Software Development
Authors: I. D. Arroyo
Abstract:
This article seeks to integrate different concepts from contemporary software engineering with an agile development approach. We seek to clarify some definitions and uses, we make a difference between the Systems Development Life Cycle (SDLC) and the methodologies, we differentiate the types of frameworks such as methodological, philosophical and behavioral, standards and documentation. We define relationships based on the documentation of the development process through formal and ad hoc models, and we define the usefulness of using DevOps and Agile Modeling as integrative methodologies of principles and best practices.Keywords: Methodologies, SDLC, modeling languages, agile modeling, DevOps, UML, agile software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9472560 Supplier Sift – A Strategic Need of Modern Entrepreneurship
Authors: Rizwan Moeen, Riaz Ahmad, Tanweer Ul Islam, Shahid Ikramullah, Muhammad Umer
Abstract:
Supplier appraisal fosters energy in Supply Chain Management and helps in best optimization of viable business partners for a company. Many Decision Making techniques have already been proposed by researchers for supplier-s appraisal. However, Analytic Hierarchy Process (AHP) is assumed to be the most structured technique to attain near-best solution of the problem. This paper focuses at implementation of AHP in the procurement processes. It also suggests that on what factors a Public Sector Enterprises must focus while dealing with their suppliers and what should the suppliers do to synchronize their activities with the strategic objectives of Organization. It also highlights the weak areas in supplier appraisal process with a view to suggest viable recommendations.Keywords: AHP, MCDM techniques, Supply Chain Management (SCM), Supplier appraisal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22832559 Design and Control Strategy of Diffused Air Aeration System
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35152558 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers
Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova
Abstract:
Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.Keywords: Drama education, preschool education, preschool teacher, research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13802557 Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems
Authors: Z. Pavlík, M. Čáchová, E. Vejmelková, T. Korecký, J. Fořt, M. Pavlíková, R. Černý
Abstract:
The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds.
Keywords: Waste ceramic powder, lime-pozzolan plasters, effective thermal conductivity, homogenization techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22592556 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562555 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: Distillation curve, petroleum distillation, simulation, true boiling point curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16252554 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility
Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young
Abstract:
The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22312553 Integrating Agents and Computational Intelligence Techniques in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18802552 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11532551 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15752550 Investigating the Effectiveness of Iranian Architecture on Sustainable Space Creation
Authors: Mansour Nikpour, Mohsen Ghasemi, Elahe Mosavi, Mohd Zin Kandar
Abstract:
lack of convenience condition is one of the problems in open spaces in hot and dry regions. Nowadays parks and green landscapes was designed and constructed without any attention to convenience condition. If this process continues, Citizens will encounter with some problems. Harsh climatic condition decreases the efficiency of people-s activities. However there is hard environment condition in hot and dry regions, Convenience condition has been provided in Iranian traditional architecture by using techniques and methods. In this research at the first step characteristics of Iranian garden that can effect on creating sustainable spaces were investigated through observation method. Pleasure space in cities will be created with using these methods and techniques in future cities. Furthermore the comparison between Iranian garden and landscape in today-s cities demonstrate the effectiveness of Iranian garden characteristics on sustainable spaces. Iranian architects used simple and available methods for creating open architectural spaces. In addition desirable conditions were provided with taking in to account both physically and spiritually. Parks and landscapes in future cities can be designed and constructed with respect to architectural techniques that used in Iranian gardens in hot and arid regions.Keywords: Iranian garden, convenience condition, landscape, sustainable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18532549 Knitting Stitches’ Manipulation for Catenary Textile Structures
Authors: Virginia Melnyk
Abstract:
This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.
Keywords: Architectural materials, catenary structures, knitting fabrication, textile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8262548 Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters
Authors: Kaumil B. Shah, Hina Chandwani
Abstract:
The modular multilevel converter (MMC) is one of the advanced topologies for medium and high-voltage applications. In high-power, high-voltage MMC, a large number of switching power devices are required. These switching power devices (IGBT) considerable switching losses. This paper analyzes the performance of different discontinuous pulse width modulation (DPWM) techniques and compares the results against a conventional carrier based pulse width modulation method, in order to reduce the switching losses of an MMC. The DPWM reference wave can be generated by adding the zero-sequence component to the original (sine) reference modulation signal. The result of the addition gives the reference signal of DPWM techniques. To minimize the switching losses of the MMC, the clamping period is controlled according to the absolute value of the output load current. No switching is generated in the clamping period so overall switching of the power device is reduced. The simulation result of the different DPWM techniques is compared with conventional carrier-based pulse-width modulation technique.Keywords: Modular multilevel converter, discontinuous pulse width modulation, switching losses, zero-sequence voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9192547 A Digitally Programmable Voltage-mode Multifunction Biquad Filter with Single-Output
Authors: C. Ketviriyakit, W. Kongnun, C. Chanapromma, P. Silapan
Abstract:
This article proposes a voltage-mode multifunction filter using differential voltage current controllable current conveyor transconductance amplifier (DV-CCCCTA). The features of the circuit are that: the quality factor and pole frequency can be tuned independently via the values of capacitors: the circuit description is very simple, consisting of merely 1 DV-CCCCTA, and 2 capacitors. Without any component matching conditions, the proposed circuit is very appropriate to further develop into an integrated circuit. Additionally, each function response can be selected by suitably selecting input signals with digital method. The PSpice simulation results are depicted. The given results agree well with the theoretical anticipation.Keywords: DV-CCCCTA, Voltage-mode, Multifunction filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13572546 Computational Intelligence Techniques and Agents- Technology in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed e-learning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: Computational Intelligence, E-learning Environments, Intelligent Agents, User Modelling, Bayesian Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17642545 Modeling of the Process Parameters using Soft Computing Techniques
Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić
Abstract:
The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.Keywords: fuzzy logic, manufacturing, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19102544 Biometric Methods and Implementation of Algorithms
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Shailendra Singh
Abstract:
Biometric measures of one kind or another have been used to identify people since ancient times, with handwritten signatures, facial features, and fingerprints being the traditional methods. Of late, Systems have been built that automate the task of recognition, using these methods and newer ones, such as hand geometry, voiceprints and iris patterns. These systems have different strengths and weaknesses. This work is a two-section composition. In the starting section, we present an analytical and comparative study of common biometric techniques. The performance of each of them has been viewed and then tabularized as a result. The latter section involves the actual implementation of the techniques under consideration that has been done using a state of the art tool called, MATLAB. This tool aids to effectively portray the corresponding results and effects.Keywords: Matlab, Recognition, Facial Vectors, Functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31922543 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15002542 Query Algebra for Semistuctured Data
Authors: Ei Ei Myat, Ni Lar Thein
Abstract:
With the tremendous growth of World Wide Web (WWW) data, there is an emerging need for effective information retrieval at the document level. Several query languages such as XML-QL, XPath, XQL, Quilt and XQuery are proposed in recent years to provide faster way of querying XML data, but they still lack of generality and efficiency. Our approach towards evolving a framework for querying semistructured documents is based on formal query algebra. Two elements are introduced in the proposed framework: first, a generic and flexible data model for logical representation of semistructured data and second, a set of operators for the manipulation of objects defined in the data model. In additional to accommodating several peculiarities of semistructured data, our model offers novel features such as bidirectional paths for navigational querying and partitions for data transformation that are not available in other proposals.Keywords: Algebra, Semistructured data, Query Algebra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13752541 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia
Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim
Abstract:
This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.
Keywords: Evaporative cooling, vapour compression, electricity consumption and CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30422540 Integrated Method for Detection of Unknown Steganographic Content
Authors: Magdalena Pejas
Abstract:
This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15642539 A Novel Method for Behavior Modeling in Uncertain Information Systems
Authors: Ali Haroonabadi, Mohammad Teshnehlab
Abstract:
None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.Keywords: Fuzzy System, Software Development Model, Software Performance Evaluation, UML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24972538 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384