

Abstract—This article seeks to integrate different concepts from

contemporary software engineering with an agile development
approach. We seek to clarify some definitions and uses, we make a
difference between the Systems Development Life Cycle (SDLC) and
the methodologies, we differentiate the types of frameworks such as
methodological, philosophical and behavioral, standards and
documentation. We define relationships based on the documentation
of the development process through formal and ad hoc models, and
we define the usefulness of using DevOps and Agile Modeling as
integrative methodologies of principles and best practices.

Keywords—Methodologies, SDLC, modeling languages, agile
modeling, DevOps, UML, agile software development.

I. INTRODUCTION

HIS article presents some advances of a research plan for
the doctorate in informatics technologies from the

University of Malaga. The research plan called: Agile design
patterns to reduce the complexity of the models taking the
experiences of the software industry. It seeks to identify,
classify, and formalize the non-formal notations or ad-hoc
models [36] that software developers are using to model agile
software. The study started by applying a survey to a sample
of 8000 emails from software development companies from
82 countries from January 2020, but the response was not as
expected (only 138 developers have responded so far).
However, important participations were received that
identified the need to redefine some concepts to give relevance
to the use of models in agile development.

The appearance of such a wide variety of methods, models,
frameworks, programming languages, and diverse and new
emerging concepts, have made it difficult to reach a coherent
integration that facilitates agile development, or that presents
improvements that can be incorporated as good practices that
allow developers to orient themselves to achieve an
integration of possibilities that could be useful to their
development teams [15]. The main objective is to clarify the
concepts of Methodologies, SDLC and modeling languages,
identifying their functional differences and their possibilities
of integration in an agile development process.

The documentation of the agile development process is
identified as an important point, making use of different types
of formal and ad-hoc models based on the integration of Agile
Modeling a documentation methodology that facilitates the
creation of documentary witnesses in different formal

I. D. Arroyo is a PhD student at the University of Málaga, Boulevar Luis

Pasteur, Teatinos Campus 29071, 29010 Málaga, Spain (e-mail:
ivan.arroyo@uma.es).

notations or ad hoc [15]. Likewise, the appearance of DevOps
is identified as an important milestone as a philosophical or
behavioral framework that must be understood as a
comprehensive approach to operation that not only includes
automation, but also facilitates communication between
members of the development team as well as with operators,
allowing different frameworks and approaches to be integrated
into a global, customer-oriented and adaptable system [8].

The integration of all these concepts and possibilities
constitutes a current vision of what contemporary software
engineering is forming, integrating not only academic
concepts, but also those produced in the industry.

II. METHODOLOGIES AND LIFE CYCLE

A. Overview

From the origins of software engineering, SDLC was
defined as a structured sequence of the “stages” of the
development process; these stages were later thought to define
the entire life of the software from its construction, operation,
obsolescence and disuse (death) as Pressman illustrates in his
graph: "Idealized and actual failure curves for software" [30].
There are many discussions regarding what activities should
be developed in each "stage", which has led to the appearance
of different frameworks to describe methodologies. These
frameworks are being adapted by each development team and
there can be as many different adaptations as there are
developers or teams in the industry, so choosing a software
development methodology can be a daunting and extremely
difficult task [15].

The experiences of use of the frameworks that have been
proposed over the years demonstrate a difference between
SDLC and methodology. For example, Scrum was proposed to
be suitable for an iterative SDLC [2]; however, there are
adaptations of Scrum in an SDLC in cascade [16], [23] or
using a prototype SDLC [18], [35], [37]. These adaptations
show an independence between the SDLC and the
methodology. To clarify this point, the SDLC should be
understood as the logical sequence of phases in time, while the
methodology defines the phases that must exist and the logical
sequence of activities that must be carried out in each phase;
that is, the methodology proposes the phases, but the SDLC
proposes the time in which these phases are executed.

B. Usefulness of Differentiating between Methodology and
SDLC in Agile Development

Choosing a methodology can be difficult for a development
team, especially when looking to move from traditional
development to agile development [15]. However, some

Methodologies, Systems Development Life Cycle and
Modeling Languages in Agile Software Development

I. D. Arroyo

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

94International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

documented experiences regarding the adoption of agile
methodologies, analyzed in more depth, show that in reality,
much of the improvement obtained consisted of going from a
Waterfall or traditional SDLC to an iterative or prototyping
SDLC [16], [17], [25], [29], [34]. This improvement does not
necessarily imply implementing agile software development;
for example, the Rational Unified Process (RUP), already used
an iterative SDLC and it was not in an agile development
methodology [26], and although RUP became Agile UP later,
and continued using the iterative SDLC, this does not mean
that the iterative SDLC is necessarily agile, because it was
used with the RUP framework before agile frameworks
emerged.

Some of the best known SDLCs are, waterfall or traditional,
iterative, spiral, prototyping, rapid iterative production
prototyping (RIPP) and incremental SDLC.

Some of the best-known methodologies are:
• 6D-BUM
• Acceptance test driven development (ATDD)
• Adaptive software development (ASD)
• Agile Unified Process (AUP)
• Constructionist design methodology (CDM)
• Crystal Clear
• Dynamic systems development method (DSDM)
• Enterprise release management (ERM)
• Enterprise Unified Process
• Extreme programming (XP)
• Feature-driven development (FDD)
• Freedom
• G300
• Joint application development (JAD)
• Kanban
• Open Unified Process (OpenUP)
• Personal Software Process PSP
• PMI Agile
• Rapid-application development (RAD)
• RUP
• Scrum
• Scrumban
• Site Reliability Engineering (SRE)
• Team software process (TSP)
• Top-down and bottom-up
• Unified process

Each of these methodologies can execute its phases in any
of the SDLC described above For example, using Kanban, the
general phases are defined: Backlog, Planned, In Progress,
Developed, Tested and Completed, the time in which the
phases are executed in the SDLC: Cascade or traditional,
iterative and prototyping can be seen in Fig. 1.

In general, the planned phase includes requirements taking,
analysis and design, the In Progress phase executes
development or programming, the Tested phase checks that
everything planned has been built and that it works, and the
Completed phase involves other implementation processes or
implantation. In Fig. 1, the SDLC Waterfall is seen as a
sequence similar to a Kanban board, and since each task is
organized as a card, each card can be located in each phase of

the SDLC Waterfall. In the prototyping SDLC, it is sought to
arrive at a prototype that is evaluated and is improved each
time the Completed phase is reached; this would imply that
each card must move back to the Planned phase each time this
prototype is evaluated. This happens frequently in Agile
development when each version delivered needs improvement.
In the Iterative SDLC, the In Progress phase is divided into
several iterations of Planned, In Progress, Developed, Tested
and Completed phases; each card goes through each iteration
until development is finally completed.

Fig. 1 Kanban methodology using three different SDLCs

In methodologies such as scrum, some "Sprints" (a time-
box of one month or less during which a "Done") are
programmed, however, it does not necessarily mean that in a
sprint, the software or any of its modules is delivered, but an
advance of the project is presented [23]. These Sprints are
generally tested in "Agile Testers" with a mini-waterfall model
that has the same structure as the waterfall SDLC [23], but this
does not mean that the Sprint is an SDLC or that Scrum has its
own SDLC.

C. Frameworks and Standards in Agile Development

Frameworks are the formal guide for implementing a
methodology, according to which, some institutions certify
competencies through exams. For example, the Scrum
framework implies the use or implementation guide that
professionals can study to become certified as a Product
Owner or Scrum Master among others. A methodological
framework is a non-mandatory standard that provides some
good practices that can be partially or fully implemented.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

95International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

Each software development methodology has its framework
and its objectives are strictly technical. However, experience
has caused DevOps to emerge with a philosophical framework
[8]; this is a very interesting milestone, since it is the first time
that it is considered necessary to document good practices
that, far from leading to fulfill technical objectives, lead to
fulfill objectives of behavior [8]. In the context of software
development, it has been difficult to understand this topic, so
there are studies that seek to trap DevOps within the technical
framework, claiming that it has a “conceptual deficit” [3];
however, DevOps has been well received in organizations
since it is related to the organizational culture [12] and allows
communication and collaboration between operators and
developers [24]. This collaboration and communication
involve the adoption of an ethics rather than the adoption of
technical skills. DevOps should be used as an “integrating
philosophy” and understood as an opportunity for developers
and operators [8]. Philosophical or behavioral frameworks are
an emerging concept, which arises with DevOps and can be
used to incorporate non-technical skills in work teams, which
can facilitate the implementation of methodological
frameworks or standards frameworks, because behavior needs
to be changed to reduce resistance to change, or facilitate
collaboration between different areas.

Software standards such as ISO, IEEE, and other standards
imposed by governments, implementing organizations, or
others must also be studied and implemented by developers
and companies. This implies a challenge, because to
demonstrate compliance with these standard frameworks it is
necessary to continuously create standardized documents. The
time it takes to create these documents can cause delays in
software delivery, directly affecting agile methodologies [15].
Within these frameworks, CMMI (Capability Maturity Model
Integration) is also counted as a regulatory framework that
allows the improvement and evaluation of processes for the
development, maintenance and operation of software systems,
of which, there are already investigations that show some
benefit when using agile methodologies with CMMI [6], [9],
[33].

According to the above, software development formally
requires teams to use a methodology framework that uses an
appropriate SDLC. It is observed that iterative SDLC and
prototype SDLC work better with agile frameworks [2], [16],
[18], [23], [35], [37]. Also, regulatory bodies require
compliance with standards [15], [33], and therefore,
companies need to implement standards’ frameworks.
Furthermore, the relationship between team members,
resistance to change, and other behavioral aspects can be
addressed by incorporating philosophical or behavioral
frameworks, which are actually an emerging topic that arises
with DevOps [8], [12], [24]. Likewise, it is important to
identify Agile Modeling as a documentation methodology that
can be used in parallel to facilitate the creation of
documentary witnesses in different formal or ad-hoc notations
[15].

III. MODELING LANGUAGES IN AGILE DEVELOPMENT

The three types of frameworks described above
(methodology, behavior and standard) require documentary
witnesses that demonstrate compliance both in development
and in operation, so it is useful to rely on a documentation
methodology such as Agile Modeling [15].

The technical documentation of the software includes
architecture, design and API documentation [7], [11],
particularly for this study, it is important to analyze the
documentary evidence of architecture and design, and these
elements are documented with models [10]. A more technical
way to refer to documentary evidence obtained during
software development is as artifacts [4], [5]. An artifact is a
document (text) or diagram (drawing) [5]. These documents or
diagrams represent the models in an abstract way, for
example, a "user story" is a document, while a "Data Flow
Diagram" (DFD) is a diagram, both are ways of representing
models [5].

Interestingly, Gorschek et al. [36] surveyed more than 3,900
software developers and found that over 70% of them do not
use formal models. They also report that eight other
investigations also show the same results on a smaller scale.
This research mainly sought to find information about the use
of models in practice, mainly of UML and it was found that
UML is not used as expected. It was also discovered that
developers are using their own "ad-hoc models" (whiteboard
drawings, tables, documents, etc.). These "ad-hoc models" are
artifacts designed by companies, development teams, or
developers [36]. It is also claimed that it is possible that the
complexity of UML has caused developers to create their own
"ad-hoc models", this could be related to the research by
Fernández-Sáez et al. [1] that found an "arbitrary use" of the
UML syntax, that is, the developers adapted the models in
such a way that their complexity was reduced, although UML
does not allow this syntax.

In agile development, some authors consider UML too
complex and heavy to be really useful in an agile environment
[13], [14], [19]-[22]. Although, there are also other authors
who say that UML is useful in agile development making use
of specific design patterns [31], [32]. Talking about the use of
models is controversial, as there are many opinions about it;
however, Agile Modeling has achieved the coexistence of
different formal and ad-hoc models, with a successful
implementation in agile development [15]. Agile Modeling
includes ad-hoc models such as "Free-Form Diagrams" and
"Mind Map".

There are many other formal models besides UML, such as
DFDs, CRCs, etc. However, these models are not part of the
same modeling language, UML unifies the object-oriented
models that existed before the OOPSLA 95 workshop [4], [5];
later, modeling languages were created based on Meta-Object
Facility (MOF). UML is a general-purpose language, while
other MOF-based languages are domain-specific languages
that fulfill the domain-specific functions they were designed
for [5]. Agile Modeling has compiled these models that make
sense in agile development, but have also allowed the use of
ad-hoc models; apparently the Agile Modeling community

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

96International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

seeks to organize a catalog of models that can be used for
agile development. Although, the initial result is a possible
unification of formal and ad-hoc models, the next step is the
formalization of models, defining a lexicon, syntax and
semantics; however, this can also be controversial, because
UML did it previously, although it only unified OO models.

Generally speaking, in any development process, artifacts
should be used to model six general characteristics of the
software, which include [5]:
• Context and Requirements: define the requirements and

their initial abstraction.
• Interaction: defines the way in which the parts of the

system are described in the context and requirements
interact.

• Structure: defines how the parts of the system are
composed, according to the context and their interaction.

• Behavior: defines how the structure of the system behaves
or the behavior that the structure implies.

• Logical architecture: defines how the structural elements
are organized to allow the required behavior.

• Physical architecture: defines, in general, the
characteristics that make up the system and allow its
execution.

TABLE I

SOFTWARE MODELS AND FEATURES

Artifact
Context and

Requirements Interaction Structure Behavior Logical architecture Physical architecture

Acceptance Test X

Business Rule X X X

Change Case X

Class Responsibility Collaborator (CRC) model X X

Constraint X

Contract model X X

Data Flow Diagram (DFD) X X X X X X

Domain Model X X X X

Essential/Abstract Use Case X

Essential/Abstract User Interface Prototype X X X X X X

Feature X

Free-Form Diagrams X X X X X X

Flow Chart X X X X

Glossary X

Logical Data Model (LDM) X X X X X

Mind Map X X X X X X

Network Diagram X

Object Role Model (ORM) Diagram X X

Personas X X

Physical Data Model (PDM) X X X X

Robustness Diagram X X X

Security Threat Model X X X

System Use Case X

Technical Requirement X

UML Activity Diagram X X

UML Class Diagram X

UML Communication/Collaboration Diagram X

UML Component Diagram X X

UML Composite Structure Diagram X X

UML Deployment Diagram X X X

UML Interaction Overview Diagram X

UML Object Diagram X X

UML Package Diagram X X

UML Sequence Diagram X X

UML State Machine Diagram X

UML Timing Diagram X

UML Use Case Diagram X

Usage Scenario X

User Interface Flow Diagram (Storyboard) X

User Interface Prototype X

User Story X

Value Stream Map X X X

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

97International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

The Agile Modeling models list can be classified as in
Table I. On the other hand, in some informal sources and in
the requirements of some job offers, it is shown that the
industry talks about backend development and frontend
development, considering that developers tend to specialize in
these two areas. The frontend specializes in programming
software at the presentation layer of the software architecture,
while the backends specialize in producing software at the
application logical layer, and some other positions require an
integration architect to integrate the frontend job with the
backend. This vision is not new; for example, Larman [5]
describes “real use cases” in which a graphical user interface
is defined, and its elements are related to the actions of the
extended use case [5]. In the same way, Lutowski [28] also
defines the interface and relates it to black box encapsulated
processes [28]. These relationships of the graphical interface
with the logical layer have a further development of the
backend model but do not develop a frontend model; although,
Martin [27] presents frontend models in UML.

Agile development teams typically have a wide variety of
professionals, including frontend or backend developers and
integration architects. Normally a single model is used, and
the frontend or backend developers encode a front layer and a
back layer separately, later the integration architect allows
these two codes to be integrated. If instead of using a single
model, a front model and a back model are used, the
integration is likely to be more efficient. On the other hand,
the use of models is very relative, since a person with
experience and studies in UML will be more motivated to use
UML than a person without experience and without studies.
Similarly, ad-hoc models such as "Freeform Diagrams" or
"Mind Map" or some formal models, such as DFDs, might be
more useful for someone who does not know UML. This
represents an advantage when using Agile Modeling, because
there is a wide list of models of greater or lesser complexity
that can be used in agile development with any methodology
framework. Also, this extensive list of models can be used to
demonstrate compliance with the required standard
frameworks.

Finally, they can use behavioral or philosophical
frameworks such as DevOps to improve communication
between operators, backend or frontend developers, and
integration architects while fostering an appropriate
collaboration culture to compliance the standards frameworks.

Arbitrary notations have also been found in the use of
UML. These forms of adaptation of UML models could be
caused by the lack of knowledge of the syntax of this
modeling language; however, these adaptations were clear
enough to be understood by the team members. This would
demonstrate that UML adaptations are being made to simplify
models and reduce time during an agile development process
[1].

The integration of these concepts, as observed in Fig. 2,
allows different good practices to be implemented. The
maturity of the software or the software development teams
does not necessarily imply the incorporation of frameworks
exclusively or rigidly; however, the integration of these allows

the possibilities to be coupled to the experience of the team,
allowing collaboration and even automation of some processes
through DevOps [8]. Also, compliance with standards such as
ISO or CMMI can be more effective if, together with
collaboration, appropriate documentation strategies are
established [6], [9], [15], [33], where Agile Modeling provides
better benefits, not only because of the way as it is
complemented by other frameworks [15], but by the open
documentation possibilities, which not only involve formal
notations but also models that can be adapted or proposed by
the teams or the developers.

Fig. 2 Integration of software engineering concepts

IV. CONCLUSION

The proposal of software development methodologies such
as RUP, as well as the formal definition of UML as an OO
modeling language [4], [5], [14], [26], allowed to make a
difference between three concepts: SDLC, Methodology and
modeling language. With the advent of agile development,
various methodologies have emerged that can be used with
different SDLCs. For example, Scrum that was proposed with
an iterative SDLC has been tested with other SDLCs such as:
cascade and prototypes [2], [16], [18], [23], [35], [37].
Differentiating between these three concepts allows the
organization of development teams to choose and combine the
frameworks that best suit their needs.

There are four different types of frameworks:
• The standard frameworks, which are those proposed by

governments and regulatory institutions such as ISO,
IEEE, CMMI, etc. that allow to implement quality, safety,
production standards, etc.

• The frameworks of methodologies that allow the
organization of software development processes based on
organized and auditable phases that are executed
according to an SDLC, among these are Kanban, Scrup,
UP, XP, etc.

• Philosophical or behavioral frameworks, which are an
emerging concept and allow establishing guidelines that
facilitate collaboration between team members, decrease
resistance to change or promote appropriate behavior to
implement tasks required by organizations, this concept
arises with DevOps.

• Documentation frameworks, which allow defining clear

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

98International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

processes to generate supporting documents for each
activity developed in a methodology, this concept arises
with Agile Modeling.

DevOps is a philosophical or communication framework,
which is essentially intended to facilitate communication
between operators and developers. It is a milestone in the
field, since it proposes behavioral skills to a greater extent
than technical skills for its implementation, which allows
facing challenges such as continuous delivery that generates
frequent changes in production environments [8], the
implementation of different types frameworks, communication
between team members, and feedback with operators among
others.

Agile Modeling is a documentation framework that unifies
different formal and ad-hoc notations. This provides a large
set of modeling possibilities that serve as documentary
witnesses that can be used to demonstrate compliance of both
standard and methodological frameworks. The advantage of
allowing ad-hoc notations within the modeling capabilities of
Agile Modeling is that it allows developers and teams the
alternative of proposing their own models and relating them to
other formal models to present more complete models. It also
opens the gap to the formalization of ad-hoc models specific
to developers or teams that apparently are more used than
formal models such as UML [36].

Considering that the industry requires for its development
teams frontend or backend developers, it is possible that Front
or back layers need to be modeled separately, not only for
relating the elements of a GUI with specific processes in the
logical application layer [5], [28], but also to facilitate the
work of the integration architect. Providing frontend and
backend models could ease the task of integration, as it has
already been found in previous work [27]. This specialization
of modeling in the visible (frontend) and the invisible
(backend) model can offer a better perspective in the
development of software with high-level programming
languages such as Rubi, for which modeling seems
unnecessary; however, a well-specified frontend model is
sufficient to demonstrate compliance with a standard or to
understand the improvements or progress obtained in each
iteration, "Split" or "done".

In general, modeling in agile development is especially
useful for documenting what was planned, designed and
happened throughout the development process, as well as
making decisions when testing or feedback each "done". In the
context of Agile Modeling, it allows establishing a historical
memory that is useful for demonstrating compliance with
standards but also for evaluating the performance of
development teams and find experiences for future decision
making.

REFERENCES
[1] A. M. Fernández-Sáez, M. R. V. Chaudron and M. Genero, An industrial

case study on the use of UML in software maintenance and its perceived
benefits and hurdles. Empirical Software Engineering. 2018

[2] A. Mundra, S. Misra and C. A. Dhawale, "Practical Scrum-Scrum Team:
Way to Produce Successful and Quality Software," 2013 13th
International Conference on Computational Science and Its

Applications, Ho Chi Minh City, 2013, pp. 119-123.
[3] A. Wahaballa, O. Wahballa, M. Abdellatief, H. Xiong and Z. Qin,

"Toward unified DevOps model," 2015 6th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
Beijing, 2015, pp. 211-214.

[4] C. Larman, "Tutorial: mastering design patterns," Proceedings of the
24th International Conference on Software Engineering. ICSE 2002,
Orlando, FL, USA, 2002, pp. 704-.

[5] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition),
Prentice Hall PTRUpper Saddle River, NJUnited States, 2004

[6] C. R. Jakobsen and K. A. Johnson, "Mature Agile with a Twist of
CMMI," Agile 2008 Conference, Toronto, ON, 2008, pp. 212-217.

[7] D. L. Parnas, "Document based rational software development",
Knowledge-Based Systems, vol. 22, no. 3, pp. 132-141, 2009

[8] D. Söllner, DevOps in der Praxis – Handlungsfelder für eine
erfolgreiche Zusammenarbeit von Entwicklung und Betrieb. HMD
Praxis Der Wirtschaftsinformatik, 54(2), 189–204. 2017.
doi:10.1365/s40702-017-0303-8

[9] F. S. F. Soares and S. R. de Lemos Meira, An agile strategy for
implementing CMMI project management practices in software
organizations, 2015 10th Iberian Conference on Information Systems
and Technologies (CISTI), 2015.

[10] G. Buchgeher, C. Klammer, B. Dorninger and A. Kern, "Providing
Technical Software Documentation as a Service - An Industrial
Experience Report," 2018 25th Asia-Pacific Software Engineering
Conference (APSEC), Nara, Japan, 2018, pp. 581-590.

[11] G. Garousi, V. Garousi-Yusifoglu, G. Ruhe, J. Zhi, M. Moussavi, B.
Smith, "Usage and usefulness of technical software documentation: An
industrial case study", Information and Software Technology, vol. 57,
pp. 664-682, 2015

[12] H. A. Mehairi, "Empowering Knowledge Sharing Behaviours through
Means Oriented vs. Goal Oriented Cultures: The Impact of
Organizational Culture on Knowledge Sharing," 2013 10th International
Conference on Information Technology: New Generations, Las Vegas,
NV, 2013, pp. 702-705.

[13] J. Erickson and K. Siau, Theoretical and practical complexity of unified
modeling language: A Delphi study and metrical analyses. In
Proceedings of the International Conference on Information Systems,
(pp. 183-194). 2004.

[14] J. Erickson and K. Siau, UML complexity. In Proceedings of the
Systems Analysis and Design Symposium, Miami, FL. 2003.

[15] J. Erickson, K. Lyytinen and K. Siau, Agile Modeling, Agile Software
Development, and Extreme Programming: The State of Research."
JDM 16.4 (2005): 88-100. Web. 7 Jun. 2019.

[16] J. Lewis and K. Neher, Over the Waterfall in a Barrel - MSIT
Adventures in Scrum. AGILE 2007 (AGILE 2007). 2007.

[17] J. W. Spence, "There has to be a better way! (software development),"
Agile Development Conference (ADC'05), Denver, CO, USA, 2005, pp.
272-278.

[18] K. E. Harper and A. Dagnino, Agile Software Architecture in Advanced
Data Analytics. 2014 IEEE/IFIP Conference on Software Architecture.
2014.

[19] K. Siau and L. Lee, Are use case and class diagrams complementary in
requirements analysis? An experimental study on use case and class
diagrams in UML. Requirements Engineering, 9(4), 229-237. 2004

[20] K. Siau and Q. Cao, Unified modeling language (UML): A complexity
analysis. Journal of Database Management, 12(1), 26-34. 2001

[21] K. Siau, J. Erickson and L. Lee, Complexity of UML: Theoretical versus
practical complexity. In Proceedings of the 12th Workshop on
Information Technology and Systems (WITS), (pp. 13-18). 2002.

[22] K. Siau, J. Erickson and L. Lee, Theoretical versus practical complexity:
The case of UML. Journal of Database Management, 16(3), 40-57. 2005

[23] K. V. Jeeva Padmini, P. S. Kankanamge, H. M. N. D. Bandara, and G. I.
U. Perera, Challenges Faced by Agile Testers: A Case Study. 2018
Moratuwa Engineering Research Conference (MERCon), 2018.

[24] M. B. Kamuto and J. J. Langerman, "Factors inhibiting the adoption of
DevOps in large organisations: South African context," 2017 2nd IEEE
International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), Bangalore, 2017, pp. 48-51.

[25] M. B. Snapp and D. Dagefoerde, The Accidental Agilists: One Team’s
Journey from Waterfall to Agile, Agile 2008 Conference, 2008

[26] P. Kruchten, "Tutorial: introduction to the Rational Unified Process/sup
/spl reg//," Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, Orlando, FL, USA, 2002, pp. 703-.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

99International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

[27] R. C. Martin, UML for Java (TM) Programmers, Prentice Hall,
OL3778385M, 2003.

[28] R. Lutowski, Software Requirements: Encapsulation, Quality, and
Reuse, Auerbach Publications, OL8259867M, 2005

[29] R. M. Haj Hamad and M. Al Fayoumi, "Scalable Agile Transformation
Process (SATP) to Convert Waterfall Project Management Office into
Agile Project Management Office," 2018 International Arab Conference
on Information Technology (ACIT), Werdanye, Lebanon, 2018, pp. 1-8.

[30] R. S. Pressman, "Idealized and actual failure curves for software," In,
Software Engineering: A Practitioner's Approach. New York: McGraw-
Hill, 1987. Print. P.P. 8.

[31] R.C. Martin, Agile Principles, Patterns, and Practices in C#. Prentice
Hall. 2006

[32] R.C. Martin, Agile software development: principles, patterns, and
practices. Pearson. 2003

[33] S. Cohan and H. Glazer, An Agile Development Team’s Quest for
CMMI® Maturity Level 5, 2009 Agile Conference, 2009

[34] S. H. VanderLeest and A. Buter, "Escape the waterfall: Agile for
aerospace," 2009 IEEE/AIAA 28th Digital Avionics Systems
Conference, Orlando, FL, 2009, pp. 6.D.3-1-6.D.3-16.

[35] S. Hermanto, E. R. Kaburuan and N. Legowo, "Gamified SCRUM
Design in Software Development Projects," 2018 International
Conference on Orange Technologies (ICOT), Nusa Dua, BALI,
Indonesia, 2018, pp. 1-8.

[36] T. Gorschek, E. Tempero, and L. Angelis, On the use of software design
models in software development practice: An empirical investigation.
Journal of Systems and Software, 95, 176–193. 2014.

[37] W. M. D. Ruchira Prasad, G. I. U. Perera, K. V. Jeeva Padmini, and H.
M. N. Dilum Bandara, Adopting Design Thinking Practices to Satisfy
Customer Expectations in Agile Practices: A Case from Sri Lankan
Software Development Industry. 2018 Moratuwa Engineering Research
Conference (MERCon). 2018.

I. D. Arroyo is a Master in software engineering and artificial intelligence and
a PhD student in Informatics Technologies at the University of Malaga; he has
worked as a project leader, technology department leader, and software
architect in different public and private companies, with an experience of 13
years in the industry.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:1, 2021

100International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
1,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
80

5.
pd

f

