Search results for: Smart Hybrid Powerpack (SHP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1175

Search results for: Smart Hybrid Powerpack (SHP)

755 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. 

Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
754 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform

Authors: Shimal Das, Dibyendu Ghoshal

Abstract:

Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.

Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
753 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
752 Stabilization of Nonnecessarily Inversely Stable First-Order Adaptive Systems under Saturated Input

Authors: M. De la Sen, O. Barambones

Abstract:

This paper presents an indirect adaptive stabilization scheme for first-order continuous-time systems under saturated input which is described by a sigmoidal function. The singularities are avoided through a modification scheme for the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be non-singular and then the estimated plant model is controllable. The modification mechanism involves the use of a hysteresis switching function. An alternative hybrid scheme, whose estimated parameters are updated at sampling instants is also given to solve a similar adaptive stabilization problem. Such a scheme also uses hysteresis switching for modification of the parameter estimates so as to ensure the controllability of the estimated plant model.

Keywords: Hybrid dynamic systems, discrete systems, saturated input, control, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
751 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: Evolutionary strategies, hybrid searches, process planning, simulated annealing, weighted due-date assignment, weighted scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
750 Embedding the Dimensions of Sustainability into City Information Modelling

Authors: Ali M. Al-Shaery

Abstract:

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

Keywords: Information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
749 Ultra-Precise Hybrid Lens Distortion Correction

Authors: Christian Bräuer-Burchardt, Peter Kühmstedt, Gunther Notni

Abstract:

A new hybrid method to realise high-precision distortion determination for optical ultra-precision 3D measurement systems based on stereo cameras using active light projection is introduced. It consists of two phases: the basic distortion determination and the refinement. The refinement phase of the procedure uses a plane surface and projected fringe patterns as calibration tools to determine simultaneously the distortion of both cameras within an iterative procedure. The new technique may be performed in the state of the device “ready for measurement" which avoids errors by a later adjustment. A considerable reduction of distortion errors is achieved and leads to considerable improvements of the accuracy of 3D measurements, especially in the precise measurement of smooth surfaces.

Keywords: 3D Surface Measurement, Fringe Projection, Lens Distortion, Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
748 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
747 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
746 Hybrid Multipath Congestion Control

Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang

Abstract:

Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs. cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.

Keywords: Congestion control, Network Utility Maximization, Multipath TCP, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
745 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
744 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
743 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines

Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan

Abstract:

This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.

Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
742 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
741 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis

Authors: Deng Zengming, Wang Mingjiang

Abstract:

As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.

Keywords: View synthesis, Gaussian mixture model, hybrid framework, fusion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
740 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
739 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marilyn Wolf

Abstract:

This paper describes the tradeoffs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The backend consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: Flask, Java, JavaScript, health monitoring, long term care, Mongo, Python, smart home, software engineering, webserver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
738 Emerging Technologies in European Aeronautics: How Collaborative Innovation Efforts are Shaping the Industry

Authors: Nikola Radovanovic, Petros Gkotsis, Mathieu Doussineau

Abstract:

Aeronautics is regarded as a strategically important sector for European competitiveness. It was at the heart of European entrepreneurial development since the industry was born. Currently, the EU is the world leader in the production of civil aircraft, including helicopters, aircraft engines, parts, and components. It is recording a surplus in trade relating to aerospace products, which are exported all over the globe. Also, this industry shows above-average investments in research and development, as demonstrated in the patent activity in this area. The post-pandemic recovery of the industry will partly depend on the possibilities to streamline collaboration in further research and innovation activities. Aeronautics features as one of the often-selected priority domains in smart specialisation, which represents the main regional and national approach in developing and implementing innovation policies in Europe. The basis for the selection of priority domains for smart specialisation lies in the mapping of innovative potential, with research and patent activities being among the key elements of this analysis. This research is aimed at identifying characteristics of the trends in research and patent activities in the regions and countries that base their competitiveness on the aeronautics sector. It is also aimed at determining the scope and patterns of collaborations in aeronautics between innovators from the European regions, focusing on revealing new technology areas that emerge from these collaborations. For this purpose, we developed a methodology based on desk research and the analysis of the PATSTAT patent database as well as the databases of R&I framework programmes.

Keywords: aeronautics, smart specialisation, innovation policy, regional policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273
737 An Overview of Islanding Detection Methods in Photovoltaic Systems

Authors: Wei Yee Teoh, Chee Wei Tan

Abstract:

The issue of unintentional islanding in PV grid interconnection still remains as a challenge in grid-connected photovoltaic (PV) systems. This paper discusses the overview of popularly used anti-islanding detection methods, practically applied in PV grid-connected systems. Anti-islanding methods generally can be classified into four major groups, which include passive methods, active methods, hybrid methods and communication base methods. Active methods have been the preferred detection technique over the years due to very small non-detected zone (NDZ) in small scale distribution generation. Passive method is comparatively simpler than active method in terms of circuitry and operations. However, it suffers from large NDZ that significantly reduces its performance. Communication base methods inherit the advantages of active and passive methods with reduced drawbacks. Hybrid method which evolved from the combination of both active and passive methods has been proven to achieve accurate anti-islanding detection by many researchers. For each of the studied anti-islanding methods, the operation analysis is described while the advantages and disadvantages are compared and discussed. It is difficult to pinpoint a generic method for a specific application, because most of the methods discussed are governed by the nature of application and system dependent elements. This study concludes that the setup and operation cost is the vital factor for anti-islanding method selection in order to achieve minimal compromising between cost and system quality.

Keywords: Active method, hybrid method, islanding detection, passive method, photovoltaic (PV), utility method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9760
736 On the Analysis of Bandwidth Management for Hybrid Load Balancing Scheme in WLANs

Authors: Chutima Prommak, Airisa Jantaweetip

Abstract:

In wireless networks, bandwidth is scare resource and it is essential to utilize it effectively. This paper analyses effects of using different bandwidth management techniques on the network performances of the Wireless Local Area Networks (WLANs) that use hybrid load balancing scheme. In particular, we study three bandwidth management schemes, namely Complete Sharing (CS), Complete Partitioning (CP), and Partial Sharing (PS). Performances of these schemes are evaluated by simulation experiments in term of percentage of network association blocking. Our results show that the CS scheme can provide relatively low blocking percentage in various network traffic scenarios whereas the PS scheme can enhance quality of services of the multimedia traffic with rather small expenses on the blocking percentage of the best effort traffic.

Keywords: Bandwidth management, Load Balancing, WLANs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
735 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
734 Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites

Authors: S. C. Kattimani

Abstract:

This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.

Keywords: Active constrained layer damping, doubly curved shells, magneto-electro-elastic, multiferroic composite, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
733 Improving Performance of World Wide Web by Adaptive Web Traffic Reduction

Authors: Achuthsankar S. Nair, J. S. Jayasudha

Abstract:

The ever increasing use of World Wide Web in the existing network, results in poor performance. Several techniques have been developed for reducing web traffic by compressing the size of the file, saving the web pages at the client side, changing the burst nature of traffic into constant rate etc. No single method was adequate enough to access the document instantly through the Internet. In this paper, adaptive hybrid algorithms are developed for reducing web traffic. Intelligent agents are used for monitoring the web traffic. Depending upon the bandwidth usage, user-s preferences, server and browser capabilities, intelligent agents use the best techniques to achieve maximum traffic reduction. Web caching, compression, filtering, optimization of HTML tags, and traffic dispersion are incorporated into this adaptive selection. Using this new hybrid technique, latency is reduced to 20 – 60 % and cache hit ratio is increased 40 – 82 %.

Keywords: Bandwidth, Congestion, Intelligent Agents, Prefetching, Web Caching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
732 Handwritten Character Recognition Using Multiscale Neural Network Training Technique

Authors: Velappa Ganapathy, Kok Leong Liew

Abstract:

Advancement in Artificial Intelligence has lead to the developments of various “smart" devices. Character recognition device is one of such smart devices that acquire partial human intelligence with the ability to capture and recognize various characters in different languages. Firstly multiscale neural training with modifications in the input training vectors is adopted in this paper to acquire its advantage in training higher resolution character images. Secondly selective thresholding using minimum distance technique is proposed to be used to increase the level of accuracy of character recognition. A simulator program (a GUI) is designed in such a way that the characters can be located on any spot on the blank paper in which the characters are written. The results show that such methods with moderate level of training epochs can produce accuracies of at least 85% and more for handwritten upper case English characters and numerals.

Keywords: Character recognition, multiscale, backpropagation, neural network, minimum distance technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
731 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: Criminal digital evidence, social media, ontologies, reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
730 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells

Authors: Saroj Kumar Sarangi, M. C. Ray

Abstract:

This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.

Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
729 A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black- Scholes Model

Authors: Yi-Chang Chen, Shan-Lin Chang, Chia-Chun Wu

Abstract:

Unlike this study focused extensively on trading behavior of option market, those researches were just taken their attention to model-driven option pricing. For example, Black-Scholes (B-S) model is one of the most famous option pricing models. However, the arguments of B-S model are previously mentioned by some pricing models reviewing. This paper following suggests the importance of the dynamic character for option pricing, which is also the reason why using the genetic algorithm (GA). Because of its natural selection and species evolution, this study proposed a hybrid model, the Genetic-BS model which combining GA and B-S to estimate the price more accurate. As for the final experiments, the result shows that the output estimated price with lower MAE value than the calculated price by either B-S model or its enhanced one, Gram-Charlier garch (G-C garch) model. Finally, this work would conclude that the Genetic-BS pricing model is exactly practical.

Keywords: genetic algorithm, Genetic-BS, option pricing model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
728 Hybrid Honeypot System for Network Security

Authors: Kyi Lin Lin Kyaw

Abstract:

Nowadays, we are facing with network threats that cause enormous damage to the Internet community day by day. In this situation, more and more people try to prevent their network security using some traditional mechanisms including firewall, Intrusion Detection System, etc. Among them honeypot is a versatile tool for a security practitioner, of course, they are tools that are meant to be attacked or interacted with to more information about attackers, their motives and tools. In this paper, we will describe usefulness of low-interaction honeypot and high-interaction honeypot and comparison between them. And then we propose hybrid honeypot architecture that combines low and high -interaction honeypot to mitigate the drawback. In this architecture, low-interaction honeypot is used as a traffic filter. Activities like port scanning can be effectively detected by low-interaction honeypot and stop there. Traffic that cannot be handled by low-interaction honeypot is handed over to high-interaction honeypot. In this case, low-interaction honeypot is used as proxy whereas high-interaction honeypot offers the optimal level realism. To prevent the high-interaction honeypot from infections, containment environment (VMware) is used.

Keywords: Low-interaction honeypot, High-interactionhoneypot, VMware, Proxy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
727 A Real-Time Image Change Detection System

Authors: Madina Hamiane, Amina Khunji

Abstract:

Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.

Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
726 Hybrid Recommender Systems using Social Network Analysis

Authors: Kyoung-Jae Kim, Hyunchul Ahn

Abstract:

This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on the clustering results. This study tries to use the cores in subgroups as an initial seed for a conventional clustering algorithm. This model chooses five cores which have the highest value of degree centrality from SNA, and then performs clustering analysis by using the cores as initial centroids (cluster centers). Then, the model amplifies the impact of friends in social network in the process of cluster-indexing CF.

Keywords: Social network analysis, Recommender systems, Collaborative filtering, Customer relationship management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773