Search results for: Intelligent Water Drop Algorithm.
5906 Conceptualization of the Attractive Work Environment and Organizational Activity for Humans in Future Deep Mines
Authors: M. A. Sanda, B. Johansson, J. Johansson
Abstract:
The purpose of this paper is to conceptualize a futureoriented human work environment and organizational activity in deep mines that entails a vision of good and safe workplace. Futureoriented technological challenges and mental images required for modern work organization design were appraised. It is argued that an intelligent-deep-mine covering the entire value chain, including environmental issues and with work organization that supports good working and social conditions towards increased human productivity could be designed. With such intelligent system and work organization in place, the mining industry could be seen as a place where cooperation, skills development and gender equality are key components. By this perspective, both the youth and women might view mining activity as an attractive job and the work environment as a safe, and this could go a long way in breaking the unequal gender balance that exists in most mines today. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16525905 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application
Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers
Abstract:
A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12235904 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18075903 A Robust Audio Fingerprinting Algorithm in MP3 Compressed Domain
Authors: Ruili Zhou, Yuesheng Zhu
Abstract:
In this paper, a new robust audio fingerprinting algorithm in MP3 compressed domain is proposed with high robustness to time scale modification (TSM). Instead of simply employing short-term information of the MP3 stream, the new algorithm extracts the long-term features in MP3 compressed domain by using the modulation frequency analysis. Our experiment has demonstrated that the proposed method can achieve a hit rate of above 95% in audio retrieval and resist the attack of 20% TSM. It has lower bit error rate (BER) performance compared to the other algorithms. The proposed algorithm can also be used in other compressed domains, such as AAC.Keywords: Audio Fingerprinting, MP3, Modulation Frequency, TSM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21955902 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents
Authors: Chiung-Hui Chen
Abstract:
With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.
Keywords: Internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11895901 Coding based Synchronization Algorithm for Secondary Synchronization Channel in WCDMA
Authors: Deng Liao, Dongyu Qiu, Ahmed K. Elhakeem
Abstract:
A new code synchronization algorithm is proposed in this paper for the secondary cell-search stage in wideband CDMA systems. Rather than using the Cyclically Permutable (CP) code in the Secondary Synchronization Channel (S-SCH) to simultaneously determine the frame boundary and scrambling code group, the new synchronization algorithm implements the same function with less system complexity and less Mean Acquisition Time (MAT). The Secondary Synchronization Code (SSC) is redesigned by splitting into two sub-sequences. We treat the information of scrambling code group as data bits and use simple time diversity BCH coding for further reliability. It avoids involved and time-costly Reed-Solomon (RS) code computations and comparisons. Analysis and simulation results show that the Synchronization Error Rate (SER) yielded by the new algorithm in Rayleigh fading channels is close to that of the conventional algorithm in the standard. This new synchronization algorithm reduces system complexities, shortens the average cell-search time and can be implemented in the slot-based cell-search pipeline. By taking antenna diversity and pipelining correlation processes, the new algorithm also shows its flexible application in multiple antenna systems.Keywords: WCDMA cell-search, synchronization algorithm, secondary synchronization channel, antenna diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23895900 Block Based Imperial Competitive Algorithm with Greedy Search for Traveling Salesman Problem
Authors: Meng-Hui Chen, Chiao-Wei Yu, Pei-Chann Chang
Abstract:
Imperial competitive algorithm (ICA) simulates a multi-agent algorithm. Each agent is like a kingdom has its country, and the strongest country in each agent is called imperialist, others are colony. Countries are competitive with imperialist which in the same kingdom by evolving. So this country will move in the search space to find better solutions with higher fitness to be a new imperialist. The main idea in this paper is using the peculiarity of ICA to explore the search space to solve the kinds of combinational problems. Otherwise, we also study to use the greed search to increase the local search ability. To verify the proposed algorithm in this paper, the experimental results of traveling salesman problem (TSP) is according to the traveling salesman problem library (TSPLIB). The results show that the proposed algorithm has higher performance than the other known methods.
Keywords: Traveling Salesman Problem, Artificial Chromosomes, Greedy Search, Imperial Competitive Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19005899 A Valley Detection for Path Planning
Authors: In-Geun Lim, Jin-Soo Kim, Chirl-Hwa Lee
Abstract:
This paper presents a constrained valley detection algorithm. The intent is to find valleys in the map for the path planning that enables a robot or a vehicle to move safely. The constraint to the valley is a desired width and a desired depth to ensure the space for movement when a vehicle passes through the valley. We propose an algorithm to find valleys satisfying these 2 dimensional constraints. The merit of our algorithm is that the pre-processing and the post-processing are not necessary to eliminate undesired small valleys. The algorithm is validated through simulation using digitized elevation data.Keywords: valley, width, depth, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14435898 Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam in Ankara, Turkey
Authors: G. Tozsin, F. Bakir, C. Acar, E. Koç
Abstract:
Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. Some physical and chemical properties (pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine) of these water resources were evaluated. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results showed that all the water resources are acceptable level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.Keywords: Kurtbogazi dam, water quality assessment, Ankara water, water supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18995897 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27355896 Neuro-Fuzzy Algorithm for a Biped Robotic System
Authors: Hataitep Wongsuwarn, Djitt Laowattana
Abstract:
This paper summaries basic principles and concepts of intelligent controls, implemented in humanoid robotics as well as recent algorithms being devised for advanced control of humanoid robots. Secondly, this paper presents a new approach neuro-fuzzy system. We have included some simulating results from our computational intelligence technique that will be applied to our humanoid robot. Subsequently, we determine a relationship between joint trajectories and located forces on robot-s foot through a proposed neuro-fuzzy technique.Keywords: Biped Robot, Computational Intelligence, Static and Dynamic Walking, Gait Synthesis, Neuro-Fuzzy System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25555895 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: A. Pajaziti, H. Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.
Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35945894 Optimal Planning of Voltage Controlled Distributed Generators for Power Loss Reduction in Unbalanced Distribution Systems
Authors: Mahmoud M. Othman, Yasser G. Hegazy
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19185893 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27385892 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28375891 Educase – Intelligent System for Pedagogical Advising Using Case-Based Reasoning
Authors: Elionai Moura, José A. da Cunha, César Analide
Abstract:
This paper introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.
Keywords: Case-based Reasoning, Pedagogical Advising, Educational Data-Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20825890 Evolutionary Algorithm Based Centralized Congestion Management for Multilateral Transactions
Authors: T. Mathumathi, S. Ganesh, R. Gunabalan
Abstract:
This work presents an approach for AC load flow based centralized model for congestion management in the forward markets. In this model, transaction maximizes its profit under the limits of transmission line capacities allocated by Independent System Operator (ISO). The voltage and reactive power impact of the system are also incorporated in this model. Genetic algorithm is used to solve centralized congestion management problem for multilateral transactions. Results obtained for centralized model using genetic algorithm is compared with Sequential Quadratic Programming (SQP) technique. The statistical performances of various algorithms such as best, worst, mean and standard deviations of social welfare are given. Simulation results clearly demonstrate the better performance of genetic algorithm over SQP.
Keywords: Congestion management, Genetic algorithm, Sequential quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17605889 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16165888 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22545887 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm
Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang
Abstract:
In this paper, performances of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminarily study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.
Keywords: Stealth Laser Dicing Process, Meandering, Metaheuristics, Shuffled Frog Leaping Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26325886 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.
Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10325885 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.
Keywords: Balanced truncation, Clustering, Dominant pole, Hankel norm, Model reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26855884 Design of an Artificial Intelligence Based Automatic Task Planner or a Robotic System
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper deals with the design and the implementation of an automatic task planner for a robot, irrespective of whether it is a stationary robot or a mobile robot. The aim of the task planner nothing but, they are planning systems which are used to plan a particular task and do the robotic manipulation. This planning system is embedded into the system software in the computer, which is interfaced to the computer. When the instructions are given using the computer, this is transformed into real time application using the robot. All the AI based algorithms are written and saved in the control software, which acts as the intelligent task planning system.Keywords: AI, Robot, Task Planner, RT, Algorithm, Specs, Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6195883 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Based Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. The needs came because most of current learning standard adopted web based learning and the e-learning systems do not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is that it uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: Knowledge Management Systems, Ontologies, Semantic Web, Open Educational Resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15765882 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm
Authors: A. Boudjemai, A. Zafrane, R. Hocine
Abstract:
Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.
Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32905881 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.
Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12225880 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.
Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15785879 Bitrate Reduction Using FMO for Video Streaming over Packet Networks
Authors: Le Thanh Ha, Hye-Soo Kim, Chun-Su Park, Seung-Won Jung, Sung-Jea Ko
Abstract:
Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.Keywords: Data Partition, Entropy Coding, Greedy Algorithm, H.264/AVC, Slice Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13045878 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
This study aimed to evaluated the surface water quality for agriculture and consumption in the Amphawa District. The surface water quality parameters in this study included water temperature, turbidity, conductivity, salinity, pH, dissolved oxygen, BOD, nitrate, suspended solids, phosphorus, total dissolved solids (TDS), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb) and cadmium (Cd). The water samples were collected from small excavation, Lychee, Pomelo and Coconut orchards for 3 seasons from January to December 2011.
The surface water quality from small excavation, Lychee, pomelo and coconut orchards were met the type III of surface water quality standard. The concentration of heavy metal and did not differ significantly at 0.05 level, except dissolved oxygen.
The surface water was suitable for consumption by the usual sterile and generally improving water quality through the process before and was suitable for agriculture.
Keywords: Water Quality, Surface Water Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20565877 SDVAR Algorithm for Detecting Fraud in Telecommunications
Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King
Abstract:
This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254