Search results for: Attribute Score
96 Traffic Behaviour of VoIP in a Simulated Access Network
Authors: Jishu Das Gupta, Srecko Howard, Angela Howard
Abstract:
Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.Keywords: Codec, DiffServ, Droptail, RED, VOIP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159595 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey
Authors: Lee Suan Chua
Abstract:
This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90oC for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration was also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the score plot clearly shows that the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90oC.Keywords: Honey colour, hydroxylmethylfurfural, thermal treatment, Tualang honey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187094 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3393 The Use of Project to Enhance Writing Skill
Authors: Duangkamol Thitivesa, Abigail Melad Essien
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, a teacher college, where student teachers are instructed to perform teaching roles mainly in basic education level. Its aim is to link theory to practice, and to help language teachers maximize the full potential of project work for genuine communication and give real meaning to writing activity. Two research questions are formulated to guide this study: a) What is the academic achievement of the students- writing skill against the 70% attainment target after the use of project to enhance the skill? and b) To what degree is the development of the students- writing skills during the course of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test, student writing works, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students- record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students- ability to attend to, recognize, and focus on meaningful patterns of language forms.Keywords: EFL classroom, Project-Based Learning, project work, writing skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332592 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63891 Nonlinear Analysis of Postural Sway in Multiple Sclerosis
Authors: Hua Cao, Laurent Peyrodie, Olivier Agnani, Cécile Donzé
Abstract:
Multiple Sclerosis (MS) is a disease which affects the central nervous system and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. 40 volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and 2 types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.Keywords: Balance, multiple sclerosis, nonlinear analysis, postural sway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197190 Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure
Authors: Rozilawati Binti Dollah, Masaki Aono
Abstract:
Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.Keywords: Biomedical literature, hierarchical text classification, ontology alignment, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201189 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.
Keywords: Deep-fried dough stick, palm oil, sunflower oil, rice bran oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185188 Performance Study on Audio Codec and Session Transfer of Open Source VoIP applications
Authors: Cheng-Suan Lee, Khong Neng Choong, So Gean Koh, Chee Onn Chow, Mazlan Abbas
Abstract:
Voice over Internet Protocol (VoIP) application or commonly known as softphone has been developing an increasingly large market in today-s telecommunication world and the trend is expected to continue with the enhancement of additional features. This includes leveraging on the existing presence services, location and contextual information to enable more ubiquitous and seamless communications. In this paper, we discuss the concept of seamless session transfer for real-time application such as VoIP and IPTV, and our prototype implementation of such concept on a selected open source VoIP application. The first part of this paper is about conducting performance evaluation and assessments across some commonly found open source VoIP applications that are Ekiga, Kphone, Linphone and Twinkle so as to identify one of them for implementing our design of seamless session transfer. Subjective testing has been carried out to evaluate the audio performance on these VoIP applications and rank them according to their Mean Opinion Score (MOS) results. The second part of this paper is to discuss on the performance evaluations of our prototype implementation of session transfer using Linphone.
Keywords: audio codec, softphone, session transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168687 Determinants of Service Quality on Thai Passengers’ Repeated Purchase of Domestic Flight Service with Thai Airways International
Authors: Nattapong Techarattanased
Abstract:
This research paper aimed to identify determinants of airline service quality on passengers’ repeated purchase of service. The population of this study was Thai passengers flying domestic flights with Thai Airways, making a total of 300 samples. These 300 samples participated in this research by answering a collection of questions by means of a questionnaire. An analysis of means score and multiple regression revealed that perceived service quality for tangible elements, reliability, responsiveness, assurance and empathy had determined repeated purchase of flight service of the passengers at a high level. Moreover, reliability and responsiveness factors could predict the passengers’ repeated purchase of flight service at the percentage of 30.6. The findings gave a signal that Thai Airways may consider a development of route network and fleet strategy as well as an establishment of aircraft and seat qualification to meet passengers’ needs and requirements. Passengers’ level of satisfaction could also be maximized by offering service value through various kinds of special deals and programs, whereas value- added pricing strategy should be considered in order to differentiate from and beat other leading airline competitors.
Keywords: Service Quality, Repeated Purchase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269786 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133185 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank
Abstract:
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].Keywords: data mining, protein secondary structure prediction, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159684 Different Ergonomic Exposure Risk and Infrared Thermal Temperature on Low Back
Authors: Sihao Lin, Bo Shen, Xuexiang Dai, Xuyan Xu, Zhenyi Wu, Xianzhe Zeng
Abstract:
Infrared Thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by IRT before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23 °C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back.
Keywords: Ergonomic exposure, infrared thermography, musculoskeletal disorders, skin temperature, low back.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13983 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years
Authors: Somruedee Pongsena
Abstract:
The purpose of this study is to follow – up the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects were Ethics and Moral, Knowledge, Cognitive Skills, Interpersonal Skill and Responsibility, Numerical Analysis as well as Communication and Information Technology Skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t- tests, and F- tests. The findings showed that samples were mostly female had less than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and experience range were 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of, the hypothesis testing’s result indicate gender only had different opinion at a significance level of 0.05.
Keywords: Follow up, Graduates, knowledge, opinion, Work performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145782 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141481 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146380 A Formative Assessment Tool for Effective Feedback
Authors: Rami Rashkovits, Ilana Lavy
Abstract:
In this study we present our developed formative assessment tool for students' assignments. The tool enables lecturers to define assignments for the course and assign each problem in each assignment a list of criteria and weights by which the students' work is evaluated. During assessment, the lecturers feed the scores for each criterion with justifications. When the scores of the current assignment are completely fed in, the tool automatically generates reports for both students and lecturers. The students receive a report by email including detailed description of their assessed work, their relative score and their progress across the criteria along the course timeline. This information is presented via charts generated automatically by the tool based on the scores fed in. The lecturers receive a report that includes summative (e.g., averages, standard deviations) and detailed (e.g., histogram) data of the current assignment. This information enables the lecturers to follow the class achievements and adjust the learning process accordingly. The tool was examined on two pilot groups of college students that study a course in (1) Object-Oriented Programming (2) Plane Geometry. Results reveal that most of the students were satisfied with the assessment process and the reports produced by the tool. The lecturers who used the tool were also satisfied with the reports and their contribution to the learning process.
Keywords: Computer-based formative assessment tool, science education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189079 Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods
Authors: Minh Van Nguyen, Magnea Gudrun Karlsdottir, Adalheidur Olafsdottir, Arnljotur Bjarki Bergsson, Sigurjon Arason
Abstract:
The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).
Keywords: Bleeding method, chilled storage, microbial growth, sensory evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298478 Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour
Authors: Mardiana Ahamad Zabidi, Akmalluddin Md. Yunus
Abstract:
Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p<0.05) fibre, protein and ash content, while fat and carbohydrate content reduced significantly (p<0.05). FESEM showed that the bread crumb surface of control and 5% SPF appeared to distribute evenly and coalesced by thin gluten film. However, higher SPF substitution level in bread formulation exhibited a deleterious effect by formation of discontinuous gluten network. For texture profile analysis, 5% SPF bread resulted in the lowest value of hardness. The score of sensory evaluation showed that 5% SPF bread received good acceptability and is comparable with control bread.
Keywords: Bread, Physicochemical properties, Scanning electron microscopy (SEM), Sensory attributes, Soursop pulp flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315477 An Empirical Investigation of Montesquieu’s Theories on Climate
Authors: Lisa J. Piergallini
Abstract:
This project uses panel regression analyses to investigate the relationships between geography, institutions, and economic development, as guided by the theories of the 18th century French philosopher Montesquieu. Contemporary scholars of political economy perpetually misinterpret Montesquieu’s theories on climate, and in doing so they miss what could be the key to resolving the geography vs. institutions debate. There is a conspicuous gap in this literature, in that it does not consider whether geography and institutors might have an interactive, dynamic effect on economic development. This project seeks to bridge that gap. Data are used for all available countries over the years 1980-2013. Two interaction terms between geographic and institutional variables are employed within the empirical analyses, and these offer a unique contribution to the ongoing geography vs. institutions debate within the political economy literature. This study finds that there is indeed an interactive effect between geography and institutions, and that this interaction has a statistically significant effect on economic development. Democracy (as measured by Polity score) and rule of law and property rights (as measured by the Fraser index) have positive effects on economic development (as measured by GDP per capita), yet the magnitude of these effects are stronger in contexts where a low percent of the national population lives in the geographical tropics. This has implications for promoting economic development, and it highlights the importance of understanding geographical context.
Keywords: Montesquieu, geography, institutions, economic development, political philosophy, political economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268676 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).
Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51275 Food Safety Management: Concerns from EU Tourists in Thailand
Authors: Kevin Wongleedee
Abstract:
Culinary culture differences can cause health problems for international tourists in Thailand. This paper drew upon data collected from an international tourist survey conducted in Bangkok, Thailand during summer of 2012. Summer is the period that a variety food safety issues and incidents are often publicized in Thailand. The survey targeted European Union tourists- concerns toward a variety of food safety issues that they encountered during their trip in Thailand. A total of 400 respondents were elicited as data input for t-test, and one way ANOVA test. The findings revealed an astonishing result that up to 46.5 percent of respondents were sick at least one time or more in Thailand. However, the majority of respondents trusted that the Thai hotel and Thai restaurants would ensure food safety, but they did not trust street vendors to ensure food safety. The level of food safety concern can be ranked from most concern to least concern by using the value of mean scores as follows: 1) artificial coloring, 2) use of preservatives, 3) antibiotics, 4) growth hormones, 5) chemical residues, and 6) bacterial contamination. The overall mean score for level of concerns was 3.493 with standard deviation of 1.677 which did not indicate a very high level of concern. In addition, the result for t-test and one way ANOVA test revealed that there was not much effect from the demographic differences to level of food safety concerns.Keywords: Concerns, European Union Tourists, Food Safety Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287974 Emotional Intelligence and Leadership Profiles among Students’ Representative Council of Malaysian Public Universities
Authors: R. A. Harun, N. M. Ishak, N. Yusoff, S. Amat
Abstract:
This quantitative research is aimed to identify the level of leadership quality and emotional intelligence for members of Students' Representatives Council (SRC) of Malaysian Public Universities (MPU). The variables include the leadership quality and emotional quotient (EQ). 238 SRC members in MPU were selected as subjects of the study. Data were collected using two instruments i.e. Malaysian Emotional Quotient Inventory (MEQI) and Ayu-Noriah Leadership Audit Trail Inventory (Ayu-Noriah, LATI). Data were analyzed using descriptive (mean and percentage). Research findings showed that the subjects scored highly in four out of five EQ domains (Self-Regulations, Self-Motivation, Empathy and Social Skills). However, the subjects scored medium to low in Self-Awareness. Analysis on the sub domains (a total of 28 sub domains) showed that the subjects scored high in 17 sub domains for EQ, whilst another 11 were at medium level. The overall analysis indicates that the subjects have high level of EQ. Findings on their leadership qualities showed that they obtained high scores in all seven factors that were measured i.e. Strategy and Leadership Model, Recruit, Review Performance and Honor, Deploy Strategically, Developing, Engage and Retain and Built HR Capabilities/Line Ownership. The overall score for leadership qualities was found to be high.
Keywords: Emotional intelligence, leadership, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119473 Emotion Dampening Strategy and Internalizing Problem Behavior: Affect Intensity as Control Variables
Authors: Jia-Ru Li, Chia-Jung Li, Ching-Wen Lin
Abstract:
Contrary to negative emotion regulation, coping with positive moods have received less attention in adolescent adjustment. However, some research has found that everyone is different on dealing with their positive emotions, which affects their adaptation and well-being. The purpose of the present study was to investigate the relationship between positive emotions dampening and internalizing behavior problems of adolescent in Taiwan. A survey was conducted and 208 students (12 to14 years old) completed the strengths and difficulties questionnaire (SDQ), the Affect Intensity Measure, and the positive emotions dampening scale. Analysis methods such as descriptive statistics, t-test, Pearson correlations and multiple regression were adapted. The results were as follows: Emotionality and internalizing problem behavior have significant gender differences. Compared to boys, girls have a higher score on negative emotionality and are at a higher risk for internalizing symptoms. However, there are no gender differences on positive emotion dampening. Additionally, in the circumstance that negative emotionality acted as the control variable, positive emotion dampening strategy was (positive) related to internalizing behavior problems. Given the results of this study, it is suggested that coaching deconstructive positive emotion strategies is to assist adolescents with internalizing behavior problems is encouraged.Keywords: Emotion dampening strategies, internalizing problem behaviors, affect intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201972 An Investigation of the Effects of Emotional Experience Induction on Mirror Neurons System Activity with Regard to Spectrum of Depressive Symptoms
Authors: Elyas Akbari, Jafar Hasani, Newsha Dehestani, Mohammad Khaleghi, Alireza Moradi
Abstract:
The aim of the present study was to assess the effect of emotional experience induction in the mirror neurons systems (MNS) activity with regard to the spectrum of depressive symptoms. For this purpose, at first stage, 449 students of Kharazmi University of Tehran were selected randomly and completed the second version of the Beck Depression Inventory (BDI-II). Then, 36 students with standard Z-score equal or above +1.5 and equal or equal or below -1.5 were selected to construct two groups of high and low spectrum of depressive symptoms. In the next stage, the basic activity of MNS was recorded (mu wave) before presenting the positive and negative emotional video clips by Electroencephalography (EEG) technique. The findings related to emotion induction (neutral, negative and positive emotion) demonstrated that the activity of recorded mirror neuron areas had a significant difference between the depressive and non-depressive groups. These findings suggest that probably processing of negative emotions in depressive individuals is due to the idea that the mirror neurons in motor cortex matched up the activity of cognitive regions with the person’s schema. Considering the results of the present study, it could be said that the MNS provides a substrate where emotional disorders can be studied and evaluated.
Keywords: Emotional experiences, mirror neurons, depressive symptoms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116671 Event Information Extraction System (EIEE): FSM vs HMM
Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani
Abstract:
Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231770 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117069 Predictive Analytics of Student Performance Determinants in Education
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.
Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54868 Quality Function Deployment Application in Sewer Pipeline Assessment
Authors: Khalid Kaddoura, Tarek Zayed
Abstract:
Infrastructure assets are essential in urban cities; their purpose is to facilitate the public needs. As a result, their conditions and states shall always be monitored to avoid any sudden malfunction. Sewer systems, one of the assets, are an essential part of the underground infrastructure as they transfer sewer medium to designated areas. However, their conditions are subject to deterioration due to ageing. Therefore, it is of great significance to assess the conditions of pipelines to avoid sudden collapses. Current practices of sewer pipeline assessment rely on industrial protocols that consider distinct defects and grades to conclude the limited average or peak score of the assessed assets. This research aims to enhance the evaluation by integrating the Quality Function Deployment (QFD) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methods in assessing the condition of sewer pipelines. The methodology shall study the cause and effect relationship of the systems’ defects to deduce the relative influence weights of each defect. Subsequently, the overall grade is calculated by aggregating the WHAT’s and HOW’s of the House of Quality (HOQ) using the computed relative weights. Thus, this study shall enhance the evaluation of the assets to conclude informative rehabilitation and maintenance plans for decision makers.
Keywords: Condition assessment, DEMATEL, QFD, sewer pipelines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82867 Moving Area Filter to Detect Object in Video Sequence from Moving Platform
Authors: Sallama Athab, Hala Bahjat
Abstract:
Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.
Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120