Search results for: Protein homology detection; support vectormachine; string kernel.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3785

Search results for: Protein homology detection; support vectormachine; string kernel.

3425 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM

Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta

Abstract:

In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.

Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
3424 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
3423 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: Call center agents, fatigue, skin color detection, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
3422 An Expert System for Car Failure Diagnosis

Authors: Ahmad T. Al-Taani

Abstract:

Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.

Keywords: Expert system, car failure diagnosis, knowledgebasedsystem, CLIPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11922
3421 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
3420 Evaluation of Haar Cascade Classifiers Designed for Face Detection

Authors: R. Padilla, C. F. F. Costa Filho, M. G. F. Costa

Abstract:

In the past years a lot of effort has been made in the field of face detection. The human face contains important features that can be used by vision-based automated systems in order to identify and recognize individuals. Face location, the primary step of the vision-based automated systems, finds the face area in the input image. An accurate location of the face is still a challenging task. Viola-Jones framework has been widely used by researchers in order to detect the location of faces and objects in a given image. Face detection classifiers are shared by public communities, such as OpenCV. An evaluation of these classifiers will help researchers to choose the best classifier for their particular need. This work focuses of the evaluation of face detection classifiers minding facial landmarks.

Keywords: Face datasets, face detection, facial landmarking, haar wavelets, Viola-Jones detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5414
3419 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
3418 Support Vector Machines For Understanding Lane Color and Sidewalks

Authors: Hoon Lee, Soonyoung Park, Kyoungho Choi

Abstract:

Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., chosen AOIs, and so on are fed into SVM, deciding colors of lanes and sidewalks robustly. Experimental results are provided to show the robustness of the proposed idea.

Keywords: video-based navigation system, lane detection, SVMs, autonomous vehicles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3417 Practical Aspects of Face Recognition

Authors: S. Vural, H. Yamauchi

Abstract:

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
3416 Proteins Length and their Phenotypic Potential

Authors: Tom Snir, Eitan Rubin

Abstract:

Mendelian Disease Genes represent a collection of single points of failure for the various systems they constitute. Such genes have been shown, on average, to encode longer proteins than 'non-disease' proteins. Existing models suggest that this results from the increased likeli-hood of longer genes undergoing mutations. Here, we show that in saturated mutagenesis experiments performed on model organisms, where the likelihood of each gene mutating is one, a similar relationship between length and the probability of a gene being lethal was observed. We thus suggest an extended model demonstrating that the likelihood of a mutated gene to produce a severe phenotype is length-dependent. Using the occurrence of conserved domains, we bring evidence that this dependency results from a correlation between protein length and the number of functions it performs. We propose that protein length thus serves as a proxy for protein cardinality in different networks required for the organism's survival and well-being. We use this example to argue that the collection of Mendelian Disease Genes can, and should, be used to study the rules governing systems vulnerability in living organisms.

Keywords: Systems Biology, Protein Length

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
3415 A Review on Soft Computing Technique in Intrusion Detection System

Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman

Abstract:

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Keywords: Intrusion Detection System, security, soft computing, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3414 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
3413 Determination of Yield and Some Quality Characteristics of Winter Canola (Brassica napus ssp. oleifera L.) Cultivars

Authors: B. Coşgun, Ö. Öztürk

Abstract:

Canola is a specific edible type of rapeseed, developed in the 1970s, which contains about 40 percent oil. This research was carried out to determine the yield and some quality characteristics of some winter canola cultivars during the 2010-2011 vegetation period in Central Anatolia of Turkey. In this research; Oase, Dante, Californium, Excalibur, Elvis, ES Hydromel, Licord, Orkan, Vectra, Nelson, Champlain and NK Petrol winter canola varieties were used as material. The field experiment was set up in a “Randomized Complete Block Design” with three replications on 21 September 2010. In this research; seed yield, oil content, protein content, oil yield and protein yield were examined. As a result of this research; seed yield, oil content, oil yield and protein yield (except protein content) were significant differences between the cultivars. The highest seed yield (6348 kg ha-1) was obtained from the NK Petrol, while the lowest seed yield (3949 kg ha-1) was determined from the Champlain cultivar was obtained. The highest oil content (46.73%) was observed from Oase and the lowest value was obtained from Vectra (41.87%) cultivar. The highest oil yield (2950 kg ha-1) was determined from NK Petrol while the least value (1681 kg ha-1) was determined from Champlain cultivar. The highest protein yield (1539.3 kg ha-1) was obtained from NK Petrol and the lowest protein yield (976.5 kg ha-1) was obtained from Champlain cultivar. The main purpose of the cultivation of oil crops, to increase the yield of oil per unit area. According the result of this research, NK Petrol cultivar which ranks first with regard to both seed yield and oil yield between cultivars as the most suitable winter canola cultivar of local conditions.

Keywords: Cultivar, Oil yield, Rapeseed, Seed Yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
3412 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients

Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai

Abstract:

Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.

Keywords: Social support, metastatic breast cancer, quality of life, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
3411 Program Memories Error Detection and Correction On-Board Earth Observation Satellites

Authors: Y. Bentoutou

Abstract:

Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.

Keywords: Error Detection and Correction, On-board computer, small satellite missions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
3410 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: Attention, fire detection, smoke detection, spatiotemporal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
3409 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: Collision identification, fixed time, convex polyhedra, neural network, AMAXNET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
3408 Decision Support Framework in Managerial Learning Environment for Organization

Authors: M. Mazhar Manzoor, Nasar.A, A. Sattar

Abstract:

In the open space of decision support system the mental impression of a manager-s decision has been the subject of large importance than the ordinary famous one, when helped by decision support system. Much of this study is an attempt to realize the relation of decision support system usage and decision outcomes that governs the system. For example, several researchers have proposed so many different models to analyze the linkage between decision support system processes and results of decision making. This study draws the important relation of manager-s mental approach with the use of decision support system. The findings of this paper are theoretical attempts to provide Decision Support System (DSS) in a way to exhibit and promote the learning in semi structured area. The proposed model shows the points of one-s learning improvements and maintains a theoretical approach in order to explore the DSS contribution in enhancing the decision forming and governing the system.

Keywords: Decision Support System , Learning Organization,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
3407 Loss of P16/INK4A Protein Expression is a Common Abnormality in Hodgkin's Lymphoma

Authors: Fawzi Irshaid, Fatiha Dilmi, Khaled Tarawneh, Raji Hadeth, Adnan Jaran, Ahad Al-Khatib

Abstract:

P16/INK4A is tumor suppressor protein that plays a critical role in cell cycle regulation. Loss of P16 protein expression has been implicated in pathogenesis of many cancers, including lymphoma. Therefore, we sought to investigate if loss of P16 protein expression is associated with lymphoma and/or any specific lymphoma subtypes (Hodgkin-s lymphoma (HL) and nonHodgkin-s lymphoma (NHL)). Fifty-five lymphoma cases consisted of 30 cases of HL and 25 cases of NHL, with an age range of 3 to 78 years, were examined for loss of P16 by immunohistochemical technique using a specific antibody reacting against P16. In total, P16 loss was seen in 33% of all lymphoma cases. P16 loss was identified in 47.7% of HL cases. In contrast, only 16% of NHL showed loss of P16. Loss of P16 was seen in 67% of HL patients with 50 years of age or older, whereas P16 loss was found in only 42% of HL patients with less than 50 years of age. P16 loss in HL is somewhat higher in male (55%) than in female (30%). In subtypes of HL, P16 loss was found exclusively in all cases of lymphocyte depletion, lymphocyte predominance and unclassified cases, whereas P16 loss was seen in 39% of mixed cellularity and 29% of nodular sclerosis cases. In low grade NHL patients, P16 loss was seen in approximately one-third of cases, whereas no or very rare of P16 loss was found in intermediate and high grade cases. P16 loss did not show any correlation with age or gender of NHL patients. In conclusion, the high rate of P16 loss seen in our study suggests that loss of P16 expression plays a critical role in the pathogenesis of lymphoma, particularly with HL.

Keywords: B-cells, immunostaining, P16 protein, Reed-Sternberg cells, tumors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
3406 Solid State Fermentation of Cassava Peel with Trichoderma viride (ATCC 36316) for Protein Enrichment

Authors: Olufunke O. Ezekiel, Ogugua C. Aworh

Abstract:

Solid state fermentation of cassava peel with emphasis on protein enrichment using Trichoderma viride was evaluated. The effect of five variables: moisture content, pH, particle size (p), nitrogen source and incubation temperature; on the true protein and total sugars of cassava peel was investigated. The optimum fermentation period was established to be 8 days. Total sugars were 5-fold higher at pH 6 relative to pH 4 and 7-fold higher when cassava peels were fermented at 30oC relative to 25oC as well as using ammonium sulfate as the nitrogen source relative to urea or a combination of both. Total sugars ranged between 123.21mg/g at 50% initial moisture content to 374mg/g at 60% and from 190.59mg/g with particle size range of 2.00>p>1.41mm to 310.10mg/g with 4.00>p>3.35mm.True protein ranged from 229.70 mg/g at pH 4 to 284.05 mg/g at pH 6; from 200.87 mg/g with urea as nitrogen source and to 254.50mg/g with ammonium sulfate; from 213.82mg/g at 50% initial moisture content to 254.50mg/g at 60% moisture content, from 205.75mg/g in cassava peel with 5.6>p> 4.75mm to 268.30 in cassava peel with particle size 4.00>p>3.35mm, from 207.57mg/g at 25oC to 254.50mg/g at 30oC Cassava peel with particle size 4.00>p>3.35 mm and initial moisture content of 60% at pH 6.0, 30oC incubation temperature with ammonium sulfate (10g N / kg substrate) was most suitable for protein enrichment with Trichoderma viride. Crude protein increased from 4.21 % in unfermented cassava peel samples to 10.43 % in fermented samples.

Keywords: Cassava peel, Solid state fermentation, Trichoderma viride, Total sugars, True protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3350
3405 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
3404 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
3403 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro

Abstract:

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
3402 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: BIT, fault detection, fault isolation, testability modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
3401 A Kernel Based Rejection Method for Supervised Classification

Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy

Abstract:

In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.

Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
3400 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta

Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari

Abstract:

This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.

Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
3399 An Evaluation of Sag Detection Techniques for Fast Solid-State Electronic Transferring to Alternate Electrical Energy Sources

Authors: M. N. Moschakis, I. G. Andritsos, V. V. Dafopoulos, J. M. Prousalidis, E. S. Karapidakis

Abstract:

This paper deals with the evaluation of different detection strategies used in power electronic devices as a critical element for an effective mitigation of voltage disturbances. The effectiveness of those detection schemes in the mitigation of disturbances such as voltage sags by a Solid-State Transfer Switch is evaluated through simulations. All critical parameters affecting their performance is analytically described and presented. Moreover, the effect of fast detection of sags on the overall performance of STS is analyzed and investigated.

Keywords: Faults (short-circuits), industrial engineering, power electronics, power quality, static transfer switch, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
3398 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO2, 13CO2, and CH4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO2 of a 3-% CO2 gas at 2 μm with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO2 peaks. In addition, the detection of 12CO2 peaks of a 385-ppm (0.0385-%) CO2 gas in the air is made at 2 μm with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH4 in a small area are attempted. For a 100-% CH4 gas trapped in a ∼ 1 mm3 glass container, the absorption peaks of CH4 are obtained at 1.65 μm with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: Environmental Gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
3397 Effect of Acid Adaptation on the Survival of Three Vibrio parahaemolyticus Strains under Simulated Gastric Condition and their Protein Expression Profiles

Authors: Ming-Lun Chiang, Hsi-Chia Chen, Chieh Wu, Yu-Ting Tseng, Ming-Ju Chen

Abstract:

In this study, three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) were subjected to acid adaptation at pH 5.5 for 90 min. The survival of acid-adapted and non-adapted V. parahaemolyticus strains under simulated gastric condition and their protein expression profiles were investigated. Results showed that acid adaptation increased the survival of the test V. parahaemolyticus strains after exposure to simulated gastric juice (pH 3). Additionally, acid adaptation also affected the protein expression in these V. parahaemolyticus strains. Nine proteins, identified as atpA, atpB, DnaK, GroEL, OmpU, enolase, fructose-bisphosphate aldolase, phosphoglycerate kinase and triosephosphate isomerase, were induced by acid adaptation in two or three of the test strains. These acid-adaptive proteins may play important regulatory roles in the acid tolerance response (ATR) of V. parahaemolyticus.

Keywords: Acid adaptation, protein expression, simulated gastric juice, Vibrio parahaemolyticus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3396 The Effect of Perceived Organizational Support on Organizational Identification

Authors: A. Çelik, M. Findik

Abstract:

The aim of the study is to determine the effects of perceived organizational support on organizational identification. In accordance with this purpose was applied on 131 family physicians in Konya. The data obtained by means of the survey method were analyzed. According to the results of correlation analysis, while positive relationship between perceived organizational support, organizational identification and supervisor support was revealed. Also, with the scope of the research, relationships between these variables and certain demographic variables were detected. According to difference analysis results of the research, significant differences between organizational identification and gender variable were determined. However, significant differences were not determined between demographic variables and perceived organizational support.

Keywords: Family Physicians, Organizational Identification, Perceived Organizational Support, Supervisor Support

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363