Search results for: Market Prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1916

Search results for: Market Prediction.

1556 Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers’ Insight

Authors: Tuti Haryati Jasimin, Hishamuddin Mohd Ali

Abstract:

Malaysia’s green building development is gaining momentum and green buildings have become a key focus area, especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognise the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transaction data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation.

Keywords: Green commercial office building, Malaysia, valuers’ perception, valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
1555 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Authors: A. H. Akhaveissy

Abstract:

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1554 Vibration Induced Fatigue Assessment in Vehicle Development Process

Authors: Fatih Kagnici

Abstract:

Improvement in CAE methods has an important role for shortening of the vehicle product development time. It is provided that validation of the design and improvements in terms of durability can be done without hardware prototype production. In recent years, several different methods have been developed in order to investigate fatigue damage of the vehicle. The intended goal among these methods is prediction of fatigue damage in a short time with reduced costs. This study developed a new fatigue damage prediction method in the automotive sector using power spectrum densities of accelerations. This study also confirmed that the weak region in vehicle can be easily detected with the method developed in this study which results were compared with conventional method.

Keywords: Fatigue damage, Power spectrum density, Vibration induced fatigue, Vehicle development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
1553 Visualization of Quantitative Thresholds in Stocks

Authors: Siddhant Sahu, P. James Daniel Paul

Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Keywords: Technical Analysis, Expert System, Law of demand, Stocks, Portfolio Analysis, Indian Automotive Sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
1552 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Authors: Adel Aloraini

Abstract:

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Keywords: Causal interactions , banks, feature selection, regularizere,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1551 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: Cognitive radio, neural network, prediction, primary user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
1550 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
1549 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1548 Hello Kitty's Popularity and Its Change of Representation

Authors: Miho Tsukamoto

Abstract:

Since “Hello Kitty” was manufactured in the market in 1974, the manufacturer, Sanrio Co., Ltd. gains high profits not only Kitty’s products but also Kitty license, which gives us a picture of Sanrio’s sales strategy in the global market. Kitty’s history, its products, and Sanrio’s sales strategy are researched in this paper. Comparing it to American Girl, and focusing on KITTYLAB, a type of attraction where you can enjoy games with Kitty, and choose its parts to build your own Kitty, the image of the cultural icon can be altered.

Keywords: American Girl, Change, Kitty, Popularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
1547 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1546 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1545 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
1544 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
1543 Using Simulation for Prediction of Units Movements in Case of Communication Failure

Authors: J. Hodicky, P. Frantis

Abstract:

Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.

Keywords: command and control system, movement prediction, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
1542 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
1541 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1540 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response

Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka

Abstract:

In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.

Keywords: Alpha waves, antidepressant, treatment outcome, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
1539 Business Model Topology in Emerging Business Ecosystem

Authors: Olga Novikova, Timo Vuori

Abstract:

This paper describes topology of business models in market ecosystem of the emerging electric mobility industry. The business model topology shows that firm-s participation in the ecosystem is associated with different requirements on resources and capabilities, and different levels of risk. Business model concept is used together with concepts of networked value creation and shows that firms can achieve higher levels of sustainable advantage by cooperation, not competition. Hybrid business models provide companies a viable alternative possibility for participation in the market ecosystem.

Keywords: Business model, ecosystem, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
1538 Effective Communication with the Czech Customers 50+ in the Financial Market

Authors: K. Matušínská, H. Starzyczná, M. Stoklasa

Abstract:

The paper deals with finding and describing of the effective marketing communication forms relating to the segment 50+ in the financial market in the Czech Republic. The segment 50+ can be seen as a great marketing potential in the future but unfortunately the Czech financial institutions haven´t still reacted enough to this fact and they haven´t prepared appropriate marketing programs for this customers´ segment. Demographic aging is a fundamental characteristic of the current European population evolution but the perspective of further population aging is more noticeable in the Czech Republic. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of marketing communication in the financial market, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing communication approach to selected sub-segment at age of 50-60 years is proposed according to marketing research findings.

Keywords: Population aging in the Czech Republic, segment 50+, financial services, marketing communication, marketing research, marketing communication approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1537 Investment Trend Analysis of Dhaka Stock Exchange: A Comparative Study

Authors: Azaz Zaman, Mirazur Rahman

Abstract:

Capital market is a crucial financial market place where companies and the government can raise long-term funds and, at the same time, investors get the opportunity to invest in the listed companies. Capital markets play a vital role not only in shifting the funds from surplus entity to deficit for investment, but also in the overall economic development of any developing country like Bangladesh. Being the first and biggest capital market of Bangladesh, Dhaka Stock Exchange (DSE) is the prime bourse of the country. The differences in the investment preference— among three broad categories of investors in DSE including individual investors, institutional investors, and government— are easily observed. Authors of this article have used five categories of investors such as sponsors or directors of the company, institutional investors, foreign investors, government, and the general public in order to present a comparative analysis of their investment patterns. Obtaining data on the percentage of investment by these five types of investors in different sectors from the DSE website, this study aims to analyze the sector-wise investment preference of these investors using August 2018 data. The study has found that the sponsors or directors of the company have the highest percentage of investment in the textile industry which is close to 16%. The Bangladesh government, as an investor, has the highest percentage of investment in the fuel & power sector, approximately 32%. It has also found that the mutual funds' sector is mostly financed by institutional investors, nearly 28%. Foreign investors have their most investments in the banking sector, which is close to 22%. It has also revealed that the textile sector is mostly financed by the general public, close to 17%. Nevertheless, general public, surprisingly, has the lowest percentage of investment in the telecommunication sector, which is 0.10%.

Keywords: Stock market investment, Dhaka stock exchange, capital market, Bangladesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
1536 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1535 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1534 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States

Authors: A. Iqbal, N. Khalid, S. Rafiq

Abstract:

The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.

Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1533 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6633
1532 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1531 Selecting Negative Examples for Protein-Protein Interaction

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

Proteomics is one of the largest areas of research for bioinformatics and medical science. An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. Predicting Protein-Protein Interaction (PPI) is one of the crucial and decisive problems in current research. Genomic data offer a great opportunity and at the same time a lot of challenges for the identification of these interactions. Many methods have already been proposed in this regard. In case of in-silico identification, most of the methods require both positive and negative examples of protein interaction and the perfection of these examples are very much crucial for the final prediction accuracy. Positive examples are relatively easy to obtain from well known databases. But the generation of negative examples is not a trivial task. Current PPI identification methods generate negative examples based on some assumptions, which are likely to affect their prediction accuracy. Hence, if more reliable negative examples are used, the PPI prediction methods may achieve even more accuracy. Focusing on this issue, a graph based negative example generation method is proposed, which is simple and more accurate than the existing approaches. An interaction graph of the protein sequences is created. The basic assumption is that the longer the shortest path between two protein-sequences in the interaction graph, the less is the possibility of their interaction. A well established PPI detection algorithm is employed with our negative examples and in most cases it increases the accuracy more than 10% in comparison with the negative pair selection method in that paper.

Keywords: Interaction graph, Negative training data, Protein-Protein interaction, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1530 Democratization, Market Liberalization and the Raise of Vested Interests and Its Impacts on Anti-Corruption Reform in Indonesia

Authors: Ahmad Khoirul Umam

Abstract:

This paper investigates the role of vested interests and its impacts on anti-corruption agenda in Indonesia following the collapse of authoritarian regime in 1998. A pervasive and rampant corruption has been believed as the main cause of the state economy’s fragility. Hence, anti-corruption measures were implemented by applying democratization and market liberalization since the establishment of a consolidated democracy which go hand in hand with a liberal market economy is convinced to be an efficacious prescription for effective anti-corruption. The reform movement has also mandated the establishment of the independent, neutral and professional special anti-corruption agency namely Corruption Eradication Commission (KPK) to more intensify the fight against the systemic corruption. This paper will examine whether these anti-corruption measures have been effective to combat corruption, and investigate to what extend have the anti-corruption efforts, especially those conducted by KPK, been impeded by the emergence of a nexus of vested interests as the side-effect of democratization and market liberalization. Based on interviews with key stakeholders from KPK, other law enforcement agencies, government, prominent scholars, journalists and NGOs in Indonesia, it is found that since the overthrow of Soeharto, anti-corruption movement in the country have become more active and serious. After gradually winning the hearth of people, KPK successfully touched the untouchable corruption perpetrators who were previously protected by political immunity, legal protection and bureaucratic barriers. However, these changes have not necessarily reduced systemic and structural corruption practices. Ironically, intensive and devastating counterattacks were frequently posed by the alignment of business actors, elites of political parties, government, and also law enforcement agencies by hijacking state’s instruments to make KPK deflated, powerless, and surrender. This paper concludes that attempts of democratization, market liberalization and the establishment of anti-corruption agency may have helped Indonesia to reduce corruption. However, it is still difficult to imply that such anti-corruption measures have fostered the more effective anti-corruption works in the newly democratized and weakly regulated liberal economic system.

Keywords: Vested interests, democratization, market liberalization, anti-corruption, leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
1529 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market

Authors: Adeolu O. Dairo

Abstract:

Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.

Keywords: Geospatial, geo-analytics, self-organizing map, customer-centric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1528 Women Entrepreneurship and Problems in Turkey

Authors: Aykut Bedük, Kemalettin Eryeşil

Abstract:

Together with the industrialization, women began to be included in business life by peeling off of the tasks given them by society and they have become a factor of production creating value in economic and social sense. Thus, women have taken place in the labor market, majority of which has been formed by men. In this study, the experiences of women entrepreneurs, who succeed in business activities, will be analyzed. By the study, current state of the women entrepreneurs in the labor market of Turkey will be put down, as a result of interferences obtained from the shared experiences of women entrepreneurs. Findings obtained at the end of the study are thought to light the way of future studies for increasing women entrepreneurship.

Keywords: Women Entrepreneurship, Entrepreneurship, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
1527 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942