Search results for: Expanded Invasive Weed Optimization algorithm (exIWO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4846

Search results for: Expanded Invasive Weed Optimization algorithm (exIWO)

4486 Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

Authors: B. Jabbari, N. Tahouni, M. H. Panjeshahi

Abstract:

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

Keywords: Absorption Heat Pump, Genetic Algorithm, Kraft Industry, Pinch Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
4485 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
4484 Query Optimization Techniques for XML Databases

Authors: Su Cheng Haw, G. S. V. Radha Krishna Rao

Abstract:

Over the past few years, XML (eXtensible Mark-up Language) has emerged as the standard for information representation and data exchange over the Internet. This paper provides a kick-start for new researches venturing in XML databases field. We survey the storage representation for XML document, review the XML query processing and optimization techniques with respect to the particular storage instance. Various optimization technologies have been developed to solve the query retrieval and updating problems. Towards the later year, most researchers proposed hybrid optimization techniques. Hybrid system opens the possibility of covering each technology-s weakness by its strengths. This paper reviews the advantages and limitations of optimization techniques.

Keywords: indexing, labeling scheme, query optimization, XML storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
4483 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
4482 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
4481 Cost Optimization of Concentric Braced Steel Building Structures

Authors: T. Balogh, L. G. Vigh

Abstract:

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
4480 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

Authors: P. Subbaraj, V. Rajasekaran

Abstract:

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.

Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
4479 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks

Authors: S. Padmapriya, M. Tamilarasi

Abstract:

Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.

Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
4478 An Augmented Beam-search Based Algorithm for the Strip Packing Problem

Authors: Hakim Akeb, Mhand Hifi

Abstract:

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
4477 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
4476 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
4475 Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles

Authors: Kyoungwoo Park, Ji-Won Han, Hyo-Jae Lim, Byeong-Sam Kim, Juhee Lee

Abstract:

Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.

Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Lift-to-drag ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6436
4474 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
4473 Multi-Case Multi-Objective Simulated Annealing (MC-MOSA): New Approach to Adapt Simulated Annealing to Multi-objective Optimization

Authors: Abdelfatteh Haidine, Ralf Lehnert

Abstract:

In this paper a new approach is proposed for the adaptation of the simulated annealing search in the field of the Multi-Objective Optimization (MOO). This new approach is called Multi-Case Multi-Objective Simulated Annealing (MC-MOSA). It uses some basics of a well-known recent Multi-Objective Simulated Annealing proposed by Ulungu et al., which is referred in the literature as U-MOSA. However, some drawbacks of this algorithm have been found, and are substituted by other ones, especially in the acceptance decision criterion. The MC-MOSA has shown better performance than the U-MOSA in the numerical experiments. This performance is further improved by some other subvariants of the MC-MOSA, such as Fast-annealing MC-MOSA, Re-annealing MCMOSA and the Two-Stage annealing MC-MOSA.

Keywords: Simulated annealing, multi-objective optimization, acceptance decision criteria, re-annealing, two-stage annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
4472 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao

Abstract:

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
4471 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
4470 Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)

Authors: Ramin Javadzadeh, Emad Javadzadeh

Abstract:

Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.

Keywords: CLA-AIS, failure surface, optimization methods, rock slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
4469 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
4468 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood

Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid

Abstract:

Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.

Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
4467 Optimum Shape and Design of Cooling Towers

Authors: A. M. El Ansary, A. A. El Damatty, A. O. Nassef

Abstract:

The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.

Keywords: B-splines, Cooling towers, Finite element, Genetic algorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3258
4466 Wavelet Feature Selection Approach for Heart Murmur Classification

Authors: G. Venkata Hari Prasad, P. Rajesh Kumar

Abstract:

Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.

Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
4465 Application of ESA in the CAVE Mode Authentication

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung

Abstract:

This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.

Keywords: ESA, CAVE, CDMA, authentication, mobilecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
4464 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
4463 Artificial Neural Network Approach for Inventory Management Problem

Authors: Govind Shay Sharma, Randhir Singh Baghel

Abstract:

The stock management of raw materials and finished goods is a significant issue for industries in fulfilling customer demand. Optimization of inventory strategies is crucial to enhancing customer service, reducing lead times and costs, and meeting market demand. This paper suggests finding an approach to predict the optimum stock level by utilizing past stocks and forecasting the required quantities. In this paper, we utilized Artificial Neural Network (ANN) to determine the optimal value. The objective of this paper is to discuss the optimized ANN that can find the best solution for the inventory model. In the context of the paper, we mentioned that the k-means algorithm is employed to create homogeneous groups of items. These groups likely exhibit similar characteristics or attributes that make them suitable for being managed using uniform inventory control policies. The paper proposes a method that uses the neural fit algorithm to control the cost of inventory.

Keywords: Artificial Neural Network, inventory management, optimization, distributor center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
4462 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
4461 Performance Evaluation of Prioritized Limited Processor-Sharing System

Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi

Abstract:

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
4460 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
4459 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
4458 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm

Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).

Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
4457 Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch

Authors: Kyaw Myo Lin, Pyone Lai Swe, Khine Zin Oo

Abstract:

In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.

Keywords: Analytical approach, distributed generations, optimal size, optimal location, optimal reactive power dispatch, particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173