Search results for: Adaptive method
8228 Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator
Authors: Inder K. Purohit, M. Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim
Abstract:
A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene.Keywords: Adaptive progressive thresholding, fringe adjusted filters, image segmentation, joint transform correlation, synthetic discriminant function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12088227 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime
Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27808226 Ontology-Navigated Tutoring System for Flipped-Mastery Model
Authors: Masao Okabe
Abstract:
Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.
Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9958225 Automatic Authentication of Handwritten Documents via Low Density Pixel Measurements
Authors: Abhijit Mitra, Pranab Kumar Banerjee, C. Ardil
Abstract:
We introduce an effective approach for automatic offline au- thentication of handwritten samples where the forgeries are skillfully done, i.e., the true and forgery sample appearances are almost alike. Subtle details of temporal information used in online verification are not available offline and are also hard to recover robustly. Thus the spatial dynamic information like the pen-tip pressure characteristics are considered, emphasizing on the extraction of low density pixels. The points result from the ballistic rhythm of a genuine signature which a forgery, however skillful that may be, always lacks. Ten effective features, including these low density points and den- sity ratio, are proposed to make the distinction between a true and a forgery sample. An adaptive decision criteria is also derived for better verification judgements.Keywords: Handwritten document verification, Skilled forgeries, Low density pixels, Adaptive decision boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17158224 Modeling of Single-Particle Impact in Abrasive Water Jet Machining
Authors: S. Y. Ahmadi-Brooghani, H. Hassanzadeh, P. Kahhal
Abstract:
This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.Keywords: Abrasive water jet machining, Adaptive meshcontrol, Explicit finite elements analysis, Single-particle impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28338223 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach
Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna
Abstract:
This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.
Keywords: Higher education institutions, complex adaptive systems, system dynamics, Mexico.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17558222 Fitness Action Recognition Based on MediaPipe
Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin
Abstract:
MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.
Keywords: Computer Vision, MediaPipe, Adaptive Boosting, Fast Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8558221 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15798220 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids
Authors: M. Wasy Akhtar
Abstract:
Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.
Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7438219 Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks
Authors: Sakshi Kausha, R.K Sharma
Abstract:
High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.Keywords: Buffer Management, Consecutive packet loss, Quality-of-Service, Priority based packet discarding, partial buffersharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16378218 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16738217 Takagi-Sugeno Fuzzy Controller for a 3-DOF Stabilized Platform with Adaptive Decoupling Scheme
Authors: S. Leghmizi, S. Liu, F. Naeim
Abstract:
This paper presents a fuzzy control system for a three degree of freedom (3-DOF) stabilized platform with explicit decoupling scheme. The system under consideration is a system with strong interactions between three channels. By using the concept of decentralized control, a control structure is developed that is composed of three control loops, each of which is associated with a single-variable fuzzy controller and a decoupling unit. Takagi-Sugeno (TS) fuzzy control algorithm is used to implement the fuzzy controller. The decoupling units design is based on the adaptive theory reasoning. Simulation tests were established using Simulink of Matlab. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this paper.
Keywords: 3-DOF platform of a ship carried antenna, the concept of decentralized control, Takagi-Sugeno (TS) fuzzy control algorithm, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25528216 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28808215 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems
Authors: Chidentree Treesatayapun
Abstract:
A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.
Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14258214 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19778213 An Innovative Transient Free Adaptive SVC in Stepless Mode of Control
Authors: U. Gudaru, D. R. Patil
Abstract:
Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.
Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, transient free
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23368212 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*
Authors: Jin Myoung Kim, Tae Ho Cho
Abstract:
Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.
Keywords: Heuristic search, key management, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16848211 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6798210 Noise Removal from Surface Respiratory EMG Signal
Authors: Slim Yacoub, Kosai Raoof
Abstract:
The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43258209 Region-Based Image Fusion with Artificial Neural Network
Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng
Abstract:
For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22588208 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10528207 Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator
Authors: A. Ameur, B. Mokhtari, N. Essounbouli, L. Mokrani
Abstract:
This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.Keywords: MRAS, PMSM, SVM, DTC, Speed and Resistance estimation, Sensorless drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38698206 On a Conjecture Regarding the Adam Optimizer
Authors: Mohamed Akrout, Douglas Tweed
Abstract:
The great success of deep learning relies on efficient optimizers, which are the algorithms that decide how to adjust network weights and biases based on gradient information. One of the most effective and widely used optimizers in recent years has been the method of adaptive moments, or Adam, but the mathematical reasons behind its effectiveness are still unclear. Attempts to analyse its behaviour have remained incomplete, in part because they hinge on a conjecture which has never been proven, regarding ratios of powers of the first and second moments of the gradient. Here we show that this conjecture is in fact false, but that a modified version of it is true, and can take its place in analyses of Adam.
Keywords: Adam optimizer, Bock’s conjecture, stochastic optimization, average regret.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3758205 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16698204 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network
Authors: Anamika Jain, A. S. Thoke, R. N. Patel
Abstract:
This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.
Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31868203 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell
Authors: Naohiko Honma, Kojiro Suzuki
Abstract:
This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19998202 Adaptive Fuzzy Routing in Opportunistic Network (AFRON)
Authors: Payam Nabhani, Sima Radmanesh
Abstract:
Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.
Keywords: Opportunistic Routing, Fuzzy Routing, Opportunistic Network, Message Routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15378201 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing
Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian
Abstract:
Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.
Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22988200 Human Facial Expression Recognition using MANFIS Model
Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar
Abstract:
Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21038199 Combined Beamforming and Channel Estimation in WCDMA Communication Systems
Authors: Nermin A. Mohamed, Mohamed F. Madkour
Abstract:
We address the problem of joint beamforming and multipath channel parameters estimation in Wideband Code Division Multiple Access (WCDMA) communication systems that employ Multiple-Access Interference (MAI) suppression techniques in the uplink (from mobile to base station). Most of the existing schemes rely on time multiplex a training sequence with the user data. In WCDMA, the channel parameters can also be estimated from a code multiplexed common pilot channel (CPICH) that could be corrupted by strong interference resulting in a bad estimate. In this paper, we present new methods to combine interference suppression together with channel estimation when using multiple receiving antennas by using adaptive signal processing techniques. Computer simulation is used to compare between the proposed methods and the existing conventional estimation techniques.
Keywords: Adaptive arrays, channel estimation, interferencecancellation, wideband code division multiple access (WCDMA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315