Search results for: visualization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2674

Search results for: visualization techniques

2344 STATISTICA Software: A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, P. Ranjetha

Abstract:

Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.

Keywords: Data Mining, STATISTICA Data Miner, Text Miner, Enterprise Server, Classification, Association, Clustering, Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
2343 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.

Keywords: Clinoptilolite, loading, modeling, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
2342 A Survey of Semantic Integration Approaches in Bioinformatics

Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir

Abstract:

Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.

Keywords: Semantic data integration, biological ontology, linked data, semantic web, OWL, RDF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2341 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach

Authors: Rajendra M Sonar

Abstract:

The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.

Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
2340 SVPWM Based Two Level VSI for Micro Grids

Authors: P. V. V. Rama Rao, M. V. Srikanth, S. Dileep Kumar Varma

Abstract:

With advances in solid-state power electronic devices and microprocessors, various pulse-width-modulation (PWM) techniques have been developed for industrial applications. This paper presents the comparison of two different PWM techniques, the sinusoidal PWM (SPWM) technique and the space-vector PWM (SVPWM) technique applied to two level VSI for micro grid applications. These two methods are compared by discussing their ease of implementation and by analyzing the output harmonic spectra of various output voltages (line-to-neutral voltages, and line-to-line voltages) and their total harmonic distortion (THD). The SVPWM technique in the under-modulation region can increase the fundamental output voltage by 15.5% over the SPWM technique.

Keywords: SPWM, SVPWM, VSI, Modulation Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
2339 Linux based Embedded Node for Capturing, Compression and Streaming of Digital Audio and Video

Authors: F.J. Suárez, J.C. Granda, J. Molleda, D.F. García

Abstract:

A prototype for audio and video capture and compression in real time on a Linux platform has been developed. It is able to visualize both the captured and the compressed video at the same time, as well as the captured and compressed audio with the goal of comparing their quality. As it is based on free code, the final goal is to run it in an embedded system running Linux. Therefore, we would implement a node to capture and compress such multimedia information. Thus, it would be possible to consider the project within a larger one aimed at live broadcast of audio and video using a streaming server which would communicate with our node. Then, we would have a very powerful and flexible system with several practical applications.

Keywords: Audio and video compression, Linux platform, live streaming, real time, visualization of captured and compressed video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
2338 Detection of Breast Cancer in the JPEG2000 Domain

Authors: Fayez M. Idris, Nehal I. AlZubaidi

Abstract:

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2337 Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping

Authors: Inchae Park, Byungun Yoon

Abstract:

As open innovation has received increasingly attention in the management of innovation, the importance of identifying potential partnership is increasing. This paper suggests a methodology to identify the interested parties as one of Innovation intermediaries to enable open innovation with patent network. To implement the methodology, multi-stage patent citation analysis such as bibliographic coupling and information visualization method such as keyword vector mapping are utilized. This paper has contribution in that it can present meaningful collaboration keywords to identified potential partners in network since not only citation information but also patent textual information is used.

Keywords: Open innovation, partner selection, bibliographic coupling, Keyword vector mapping, patent network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
2336 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2335 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: Resistivity, inversion, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6076
2334 Modernization of the Economic Price Adjustment Software

Authors: Roger L Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for longterm contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2333 Landscape Data Transformation: Categorical Descriptions to Numerical Descriptors

Authors: Dennis A. Apuan

Abstract:

Categorical data based on description of the agricultural landscape imposed some mathematical and analytical limitations. This problem however can be overcome by data transformation through coding scheme and the use of non-parametric multivariate approach. The present study describes data transformation from qualitative to numerical descriptors. In a collection of 103 random soil samples over a 60 hectare field, categorical data were obtained from the following variables: levels of nitrogen, phosphorus, potassium, pH, hue, chroma, value and data on topography, vegetation type, and the presence of rocks. Categorical data were coded, and Spearman-s rho correlation was then calculated using PAST software ver. 1.78 in which Principal Component Analysis was based. Results revealed successful data transformation, generating 1030 quantitative descriptors. Visualization based on the new set of descriptors showed clear differences among sites, and amount of variation was successfully measured. Possible applications of data transformation are discussed.

Keywords: data transformation, numerical descriptors, principalcomponent analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2332 Supplier Sift – A Strategic Need of Modern Entrepreneurship

Authors: Rizwan Moeen, Riaz Ahmad, Tanweer Ul Islam, Shahid Ikramullah, Muhammad Umer

Abstract:

Supplier appraisal fosters energy in Supply Chain Management and helps in best optimization of viable business partners for a company. Many Decision Making techniques have already been proposed by researchers for supplier-s appraisal. However, Analytic Hierarchy Process (AHP) is assumed to be the most structured technique to attain near-best solution of the problem. This paper focuses at implementation of AHP in the procurement processes. It also suggests that on what factors a Public Sector Enterprises must focus while dealing with their suppliers and what should the suppliers do to synchronize their activities with the strategic objectives of Organization. It also highlights the weak areas in supplier appraisal process with a view to suggest viable recommendations.

Keywords: AHP, MCDM techniques, Supply Chain Management (SCM), Supplier appraisal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
2331 The Effect of Canard Configurations to the Aerodynamics of the Blended Wing Body

Authors: Zurriati Mohd Ali, Wahyu Kuntjoro, Wirachman Wisnoe

Abstract:

The aerodynamics characteristics of a blended-wing body (BWB) aircraft were obtained in Universiti Teknologi MARA low speed wind tunnel. The scaled-down of BWB model consisted of a canard as its horizontal stabilizer. There were four canards with different aspect ratio used in the experiments. Canard setting angles were varied from -20q to 20q. All tests were conducted at velocity of 35 m/s, with Mach number 0.1. At low angles of attacks, the increment of lift slope for various canards aspect ratio is small and almost constant. Higher canard aspect ratio will cause higher drag. However, canard has a high effect to the moment at zero lift, CM,0.The visualization using mini tuff was performed to observe the airflow at the upper surface of canard. KeywordsAerodynamics,blended-wing body, canard, wind tunnel.

Keywords: Aerodynamics, blended-wing body, canard, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5520
2330 Design and Control Strategy of Diffused Air Aeration System

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).

Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3516
2329 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers

Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova

Abstract:

Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.

Keywords: Drama education, preschool education, preschool teacher, research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2328 Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems

Authors: Z. Pavlík, M. Čáchová, E. Vejmelková, T. Korecký, J. Fořt, M. Pavlíková, R. Černý

Abstract:

The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds. 

Keywords: Waste ceramic powder, lime-pozzolan plasters, effective thermal conductivity, homogenization techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
2327 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
2326 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: Distillation curve, petroleum distillation, simulation, true boiling point curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2325 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility

Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young

Abstract:

The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.

Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2324 Integrating Agents and Computational Intelligence Techniques in E-learning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
2323 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
2322 Software Maintenance Severity Prediction for Object Oriented Systems

Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

Keywords: Neural Network, Software faults, Software Metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2321 Investigating the Effectiveness of Iranian Architecture on Sustainable Space Creation

Authors: Mansour Nikpour, Mohsen Ghasemi, Elahe Mosavi, Mohd Zin Kandar

Abstract:

lack of convenience condition is one of the problems in open spaces in hot and dry regions. Nowadays parks and green landscapes was designed and constructed without any attention to convenience condition. If this process continues, Citizens will encounter with some problems. Harsh climatic condition decreases the efficiency of people-s activities. However there is hard environment condition in hot and dry regions, Convenience condition has been provided in Iranian traditional architecture by using techniques and methods. In this research at the first step characteristics of Iranian garden that can effect on creating sustainable spaces were investigated through observation method. Pleasure space in cities will be created with using these methods and techniques in future cities. Furthermore the comparison between Iranian garden and landscape in today-s cities demonstrate the effectiveness of Iranian garden characteristics on sustainable spaces. Iranian architects used simple and available methods for creating open architectural spaces. In addition desirable conditions were provided with taking in to account both physically and spiritually. Parks and landscapes in future cities can be designed and constructed with respect to architectural techniques that used in Iranian gardens in hot and arid regions.

Keywords: Iranian garden, convenience condition, landscape, sustainable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2320 Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters

Authors: Kaumil B. Shah, Hina Chandwani

Abstract:

The modular multilevel converter (MMC) is one of the advanced topologies for medium and high-voltage applications. In high-power, high-voltage MMC, a large number of switching power devices are required. These switching power devices (IGBT) considerable switching losses. This paper analyzes the performance of different discontinuous pulse width modulation (DPWM) techniques and compares the results against a conventional carrier based pulse width modulation method, in order to reduce the switching losses of an MMC. The DPWM reference wave can be generated by adding the zero-sequence component to the original (sine) reference modulation signal. The result of the addition gives the reference signal of DPWM techniques. To minimize the switching losses of the MMC, the clamping period is controlled according to the absolute value of the output load current. No switching is generated in the clamping period so overall switching of the power device is reduced. The simulation result of the different DPWM techniques is compared with conventional carrier-based pulse-width modulation technique.

Keywords: Modular multilevel converter, discontinuous pulse width modulation, switching losses, zero-sequence voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
2319 Computational Intelligence Techniques and Agents- Technology in E-learning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution a newly developed e-learning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

Keywords: Computational Intelligence, E-learning Environments, Intelligent Agents, User Modelling, Bayesian Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
2318 Modeling of the Process Parameters using Soft Computing Techniques

Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić

Abstract:

The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.

Keywords: fuzzy logic, manufacturing, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
2317 Biometric Methods and Implementation of Algorithms

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Shailendra Singh

Abstract:

Biometric measures of one kind or another have been used to identify people since ancient times, with handwritten signatures, facial features, and fingerprints being the traditional methods. Of late, Systems have been built that automate the task of recognition, using these methods and newer ones, such as hand geometry, voiceprints and iris patterns. These systems have different strengths and weaknesses. This work is a two-section composition. In the starting section, we present an analytical and comparative study of common biometric techniques. The performance of each of them has been viewed and then tabularized as a result. The latter section involves the actual implementation of the techniques under consideration that has been done using a state of the art tool called, MATLAB. This tool aids to effectively portray the corresponding results and effects.

Keywords: Matlab, Recognition, Facial Vectors, Functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3192
2316 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets

Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi

Abstract:

In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.

Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2315 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384