Search results for: Case Based Reasoning technique (CBR).
14778 A Text Mining Technique Using Association Rules Extraction
Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey
Abstract:
This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.
Keywords: Text mining, data mining, association rule mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443914777 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing physical or chemical characteristics considerably influence the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure the stable conditions which limit deterioration, since the value of the deterioration rate could be easily influenced by the mode of transportation. The fuzzy definition of variables allows one to take these variations into account. Furthermore, an appropriate choice of the defuzzification method permits one to adapt results to real conditions as far as possible. In this article those methods which take into account the relationship between the deterioration rate of perishable goods and transportation by ship will be applied with the aim of (a) minimizing the total cost function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) improving the supply chain sustainability by reducing environmental impact and waste disposal costs.
Keywords: Perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258614776 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248914775 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127814774 Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms
Authors: Giovanni Incerti
Abstract:
The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.
Keywords: Command shaping, residual vibrations, belt transmission, servomechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151014773 A Robust Extrapolation Method for Curtailed Aperture Reconstruction in Acoustic Imaging
Authors: R. Bremananth
Abstract:
Acoustic Imaging based sound localization using microphone array is a challenging task in digital-signal processing. Discrete Fourier transform (DFT) based near-field acoustical holography (NAH) is an important acoustical technique for sound source localization and provide an efficient solution to the ill-posed problem. However, in practice, due to the usage of small curtailed aperture and its consequence of significant spectral leakage, the DFT could not reconstruct the active-region-of-sound (AROS) effectively, especially near the edges of aperture. In this paper, we emphasize the fundamental problems of DFT-based NAH, provide a solution to spectral leakage effect by the extrapolation based on linear predictive coding and 2D Tukey windowing. This approach has been tested to localize the single and multi-point sound sources. We observe that incorporating extrapolation technique increases the spatial resolution, localization accuracy and reduces spectral leakage when small curtail aperture with a lower number of sensors accounts.Keywords: Acoustic Imaging, Discrete Fourier Transform (DFT), k-space wavenumber, Near-Field Acoustical Holography (NAH), Source Localization, Spectral Leakage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169314772 Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Technique for Order Preference by Similarity to Ideal Solution, TOPSIS, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA, Su-35, F-35, TF-X (MMU)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63214771 GPI Observer-based Tracking Control and Synchronization of Chaotic Systems
Authors: Dangjun Zhao, Yongji Wang, Lei Liu
Abstract:
Based on general proportional integral (GPI) observers and sliding mode control technique, a robust control method is proposed for the master-slave synchronization of chaotic systems in the presence of parameter uncertainty and with partially measurable output signal. By using GPI observer, the master dynamics are reconstructed by the observations from a measurable output under the differential algebraic framework. Driven by the signals provided by GPI observer, a sliding mode control technique is used for the tracking control and synchronization of the master-slave dynamics. The convincing numerical results reveal the proposed method is effective, and successfully accommodate the system uncertainties, disturbances, and noisy corruptions.
Keywords: GPI observer, sliding mode control, master-slave synchronization, chaotic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199514770 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic
Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin
Abstract:
In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232914769 An Improvement of PDLZW implementation with a Modified WSC Updating Technique on FPGA
Authors: Perapong Vichitkraivin, Orachat Chitsobhuk
Abstract:
In this paper, an improvement of PDLZW implementation with a new dictionary updating technique is proposed. A unique dictionary is partitioned into hierarchical variable word-width dictionaries. This allows us to search through dictionaries in parallel. Moreover, the barrel shifter is adopted for loading a new input string into the shift register in order to achieve a faster speed. However, the original PDLZW uses a simple FIFO update strategy, which is not efficient. Therefore, a new window based updating technique is implemented to better classify the difference in how often each particular address in the window is referred. The freezing policy is applied to the address most often referred, which would not be updated until all the other addresses in the window have the same priority. This guarantees that the more often referred addresses would not be updated until their time comes. This updating policy leads to an improvement on the compression efficiency of the proposed algorithm while still keep the architecture low complexity and easy to implement.Keywords: lossless data compression, LZW algorithm, PDLZW algorithm, WSC and dictionary update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162814768 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249314767 Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security
Authors: Rajlaxmi Chouhan, Pritee Khanna
Abstract:
In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.Keywords: Fingerprint watermarking, minutiae, discrete wavelet transform, PN sequence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201914766 A New IT-Convergence Service Design Framework
Authors: Hwa-Jong Kim
Abstract:
In many countries, digital city or ubiquitous city (u-City) projects have been initiated to provide digitalized economic environments to cities. Recently in Korea, Kangwon Province has started the u-Kangwon project to boost local economy with digitalized tourism services. We analyze the limitations of the ubiquitous IT approach through the u-Kangwon case. We have found that travelers are more interested in quality over speed in access of information. For improved service quality, we are looking to develop an IT-convergence service design framework (ISDF). The ISDF is based on the service engineering technique and composed of three parts: Service Design, Service Simulation, and the Service Platform.Keywords: Service design, service simulation, service platform, service design framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125914765 Study of Tribological Behaviour of Al6061/Silicon Carbide/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques
Authors: Mohamed Zakaulla, A. R. Anwar Khan
Abstract:
Al6061 alloy base matrix, reinforced with particles of silicon carbide (10 wt %) and Graphite powder (1wt%), known as hybrid composites have been fabricated by liquid metallurgy route (stir casting technique) and optimized at different parameters like applied load, sliding speed and sliding distance by taguchi method. A plan of experiment generated through taguchi technique was used to perform experiments based on L27 orthogonal array. The developed ANOVA and regression equations are used to find the optimum coefficient of friction and wear under the influence of applied load, sliding speed and sliding distance. On the basis of “smaller the best” the dry sliding wear resistance was analysed and finally confirmation tests were carried out to verify the experimental results.Keywords: Analysis of variance, dry sliding wear, Hybrid composite, orthogonal array, Taguchi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270414764 Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier
Authors: Marzuki Khalid, RubiyahYusof, AnisSalwaMohdKhairuddin
Abstract:
An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.Keywords: Tropical wood species, nonlinear data, featureextractors, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200014763 A Renovated Cook's Distance Based On The Buckley-James Estimate In Censored Regression
Authors: Nazrina Aziz, Dong Q. Wang
Abstract:
There have been various methods created based on the regression ideas to resolve the problem of data set containing censored observations, i.e. the Buckley-James method, Miller-s method, Cox method, and Koul-Susarla-Van Ryzin estimators. Even though comparison studies show the Buckley-James method performs better than some other methods, it is still rarely used by researchers mainly because of the limited diagnostics analysis developed for the Buckley-James method thus far. Therefore, a diagnostic tool for the Buckley-James method is proposed in this paper. It is called the renovated Cook-s Distance, (RD* i ) and has been developed based on the Cook-s idea. The renovated Cook-s Distance (RD* i ) has advantages (depending on the analyst demand) over (i) the change in the fitted value for a single case, DFIT* i as it measures the influence of case i on all n fitted values Yˆ∗ (not just the fitted value for case i as DFIT* i) (ii) the change in the estimate of the coefficient when the ith case is deleted, DBETA* i since DBETA* i corresponds to the number of variables p so it is usually easier to look at a diagnostic measure such as RD* i since information from p variables can be considered simultaneously. Finally, an example using Stanford Heart Transplant data is provided to illustrate the proposed diagnostic tool.
Keywords: Buckley-James estimators, censored regression, censored data, diagnostic analysis, product-limit estimator, renovated Cook's Distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143814762 Tagged Grid Matching Based Object Detection in Wavelet Neural Network
Authors: R. Arulmurugan, P. Sengottuvelan
Abstract:
Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.
Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196514761 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology
Authors: Ines Hamdi, Mohamed Ben Ahmed
Abstract:
The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower
Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148514760 A Decision Boundary based Discretization Technique using Resampling
Authors: Taimur Qureshi, Djamel A Zighed
Abstract:
Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees.Keywords: Bootstrap, discretization, resampling, soft decision trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143414759 Application of a Time-Frequency-Based Blind Source Separation to an Instantaneous Mixture of Secondary Radar Sources
Authors: M. Tria, M. Benidir, E. Chaumette
Abstract:
In Secondary Surveillance Radar (SSR) systems, it is more difficult to locate and recognise aircrafts in the neighbourhood of civil airports since aerial traffic becomes greater. Here, we propose to apply a recent Blind Source Separation (BSS) algorithm based on Time-Frequency Analysis, in order to separate messages sent by different aircrafts and falling in the same radar beam in reception. The above source separation method involves joint-diagonalization of a set of smoothed version of spatial Wigner-Ville distributions. The technique makes use of the difference in the t-f signatures of the nonstationary sources to be separated. Consequently, as the SSR sources emit different messages at different frequencies, the above fitted to this new application. We applied the technique in simulation to separate SSR replies. Results are provided at the end of the paper.Keywords: Blind Source Separation, Time-Frequency Analysis, Secondary Radar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169514758 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215914757 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208314756 An Intelligent Optimization Model for Multi-objective Order Allocation Planning
Authors: W. K. Wong, Z. X. Guo, P.Y. Mok
Abstract:
This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are conducted to validate the proposed model. Results show that (1) the proposed model can effectively solve the investigated problem by providing effective production decision-making solutions, which outperformsan NSGA-II-based optimization process and an industrial method.Keywords: Multi-objective order allocation planning, Pareto optimization, Memetic algorithm, Mento Carlo simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163914755 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles
Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego
Abstract:
Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.
Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234414754 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt
Authors: Abbaas I. Kareem, H. Nikraz
Abstract:
The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.
Keywords: Recycled concrete aggregates, hot mix asphalt, double coating technique, aggregate crashed value, Marshall parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84214753 Optimum Stratification of a Skewed Population
Authors: D.K. Rao, M.G.M. Khan, K.G. Reddy
Abstract:
The focus of this paper is to develop a technique of solving a combined problem of determining Optimum Strata Boundaries(OSB) and Optimum Sample Size (OSS) of each stratum, when the population understudy isskewed and the study variable has a Pareto frequency distribution. The problem of determining the OSB isformulated as a Mathematical Programming Problem (MPP) which is then solved by dynamic programming technique. A numerical example is presented to illustrate the computational details of the proposed method. The proposed technique is useful to obtain OSB and OSS for a Pareto type skewed population, which minimizes the variance of the estimate of population mean.
Keywords: Stratified sampling, Optimum strata boundaries, Optimum sample size, Pareto distribution, Mathematical programming problem, Dynamic programming technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405914752 Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System
Authors: Marc Landry, Azeddine Kaddouri, Yassine Bouslimani, Mohsen Ghribi
Abstract:
In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.
Keywords: Particle-swarm optimization, optical fiber, automatic alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218314751 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia
Authors: Nevine M. Labib, Michael N. Malek
Abstract:
Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221514750 Persistence of Termination for Term Rewriting Systems with Ordered Sorts
Authors: Munehiro Iwami
Abstract:
A property is persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. Zantema showed that termination is persistent for term rewriting systems without collapsing or duplicating rules. In this paper, we show that the Zantema's result can be extended to term rewriting systems on ordered sorts, i.e., termination is persistent for term rewriting systems on ordered sorts without collapsing, decreasing or duplicating rules. Furthermore we give the example as application of this result. Also we obtain that completeness is persistent for this class of term rewriting systems.Keywords: Theory of computing, Model-based reasoning, term rewriting system, termination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138914749 The Significance of the Radiography Technique in the Non-Destructive Evaluation of the Integrity and Reliability of Cast Interconnects
Authors: Keshav Pujeri, Pranesh Jain, Krutibas Panda
Abstract:
Significant changes in oil and gas drilling have emphasized the need to verify the integrity and reliability of drill stem components. Defects are inevitable in cast components, regardless of application; but if these defects go undetected, any severe defect could cause down-hole failure. One such defect is shrinkage porosity. Castings with lower level shrinkage porosity (CB levels 1 and 2) have scattered pores and do not occupy large volumes; so pressure testing and helium leak testing (HLT) are sufficient for qualifying the castings. However, castings with shrinkage porosity of CB level 3 and higher, behave erratically under pressure testing and HLT making these techniques insufficient for evaluating the castings- integrity. This paper presents a case study to highlight how the radiography technique is much more effective than pressure testing and HLT.Keywords: Casting Defects, Interconnects, Leak Check, Pressure Test, Radiography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3514