Search results for: nonlinear time history analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14217

Search results for: nonlinear time history analysis

10677 Usability in E-Commerce Websites: Results of Eye Tracking Evaluations

Authors: Beste Kaysı, Yasemin Topaloğlu

Abstract:

Usability is one of the most important quality attributes for web-based information systems. Specifically, for e-commerce applications, usability becomes more prominent. In this study, we aimed to explore the features that experienced users seek in e-commerce applications. We used eye tracking method in evaluations. Eye movement data are obtained from the eye-tracking method and analyzed based on task completion time, number of fixations, as well as heat map and gaze plot measures. The results of the analysis show that the eye movements of participants' are too static in certain areas and their areas of interest are scattered in many different places. It has been determined that this causes users to fail to complete their transactions. According to the findings, we outlined the issues to improve the usability of e-commerce websites. Then we propose solutions to identify the issues. In this way, it is expected that e-commerce sites will be developed which will make experienced users more satisfied.

Keywords: E-commerce websites, eye tracking method, usability, website evaluations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
10676 Comparison of Pore Space Features by Thin Sections and X-Ray Microtomography

Authors: H. Alves, J. T. Assis, M. Geraldes, I. Lima, R. T. Lopes

Abstract:

Microtomographic images and thin section (TS) images were analyzed and compared against some parameters of geological interest such as porosity and its distribution along the samples. The results show that microtomography (CT) analysis, although limited by its resolution, have some interesting information about the distribution of porosity (homogeneous or not) and can also quantify the connected and non-connected pores, i.e., total porosity. TS have no limitations concerning resolution, but are limited by the experimental data available in regards to a few glass sheets for analysis and also can give only information about the connected pores, i.e., effective porosity. Those two methods have their own virtues and flaws but when paired together they are able to complement one another, making for a more reliable and complete analysis.

Keywords: Microtomography, petrographical microscopy, sediments, thin sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
10675 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
10674 3D Star Skeleton for Fast Human Posture Representation

Authors: Sungkuk Chun, Kwangjin Hong, Keechul Jung

Abstract:

In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.

Keywords: computer vision, gesture recognition, skeletonization, human posture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
10673 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
10672 Performance of Histogram-Based Skin Colour Segmentation for Arms Detection in Human Motion Analysis Application

Authors: Rosalyn R. Porle, Ali Chekima, Farrah Wong, G. Sainarayanan

Abstract:

Arms detection is one of the fundamental problems in human motion analysis application. The arms are considered as the most challenging body part to be detected since its pose and speed varies in image sequences. Moreover, the arms are usually occluded with other body parts such as the head and torso. In this paper, histogram-based skin colour segmentation is proposed to detect the arms in image sequences. Six different colour spaces namely RGB, rgb, HSI, TSL, SCT and CIELAB are evaluated to determine the best colour space for this segmentation procedure. The evaluation is divided into three categories, which are single colour component, colour without luminance and colour with luminance. The performance is measured using True Positive (TP) and True Negative (TN) on 250 images with manual ground truth. The best colour is selected based on the highest TN value followed by the highest TP value.

Keywords: image colour analysis, image motion analysis, skin, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
10671 Comparison between Separable and Irreducible Goppa Code in McEliece Cryptosystem

Authors: Thuraya M. Qaradaghi, Newroz N. Abdulrazaq

Abstract:

The McEliece cryptosystem is an asymmetric type of cryptography based on error correction code. The classical McEliece used irreducible binary Goppa code which considered unbreakable until now especially with parameter [1024, 524, and 101], but it is suffering from large public key matrix which leads to be difficult to be used practically. In this work Irreducible and Separable Goppa codes have been introduced. The Irreducible and Separable Goppa codes used are with flexible parameters and dynamic error vectors. A Comparison between Separable and Irreducible Goppa code in McEliece Cryptosystem has been done. For encryption stage, to get better result for comparison, two types of testing have been chosen; in the first one the random message is constant while the parameters of Goppa code have been changed. But for the second test, the parameters of Goppa code are constant (m=8 and t=10) while the random message have been changed. The results show that the time needed to calculate parity check matrix in separable are higher than the one for irreducible McEliece cryptosystem, which is considered expected results due to calculate extra parity check matrix in decryption process for g2(z) in separable type, and the time needed to execute error locator in decryption stage in separable type is better than the time needed to calculate it in irreducible type. The proposed implementation has been done by Visual studio C#.

Keywords: McEliece cryptosystem, Goppa code, separable, irreducible.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
10670 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram

Authors: V Krishnaveni, S Jayaraman, K Ramadoss

Abstract:

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
10669 Dam Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran

Authors: Ali Heidari

Abstract:

This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez Dam located in the Dez Rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez Dam operation data show that in one of the best flood control records, 17% of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.

Keywords: Dam operation, flood control criteria, Dez Dam, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386
10668 DWM-CDD: Dynamic Weighted Majority Concept Drift Detection for Spam Mail Filtering

Authors: Leili Nosrati, Alireza Nemaney Pour

Abstract:

Although e-mail is the most efficient and popular communication method, unwanted and mass unsolicited e-mails, also called spam mail, endanger the existence of the mail system. This paper proposes a new algorithm called Dynamic Weighted Majority Concept Drift Detection (DWM-CDD) for content-based filtering. The design purposes of DWM-CDD are first to accurate the performance of the previously proposed algorithms, and second to speed up the time to construct the model. The results show that DWM-CDD can detect both sudden and gradual changes quickly and accurately. Moreover, the time needed for model construction is less than previously proposed algorithms.

Keywords: Concept drift, Content-based filtering, E-mail, Spammail.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
10667 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction

Authors: S. A. Eftekhari

Abstract:

In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.

Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
10666 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
10665 String Matching using Inverted Lists

Authors: Chouvalit Khancome, Veera Boonjing

Abstract:

This paper proposes a new solution to string matching problem. This solution constructs an inverted list representing a  string pattern to be searched for. It then uses a new algorithm to process an input string in a single pass. The preprocessing phase  takes 1) time complexity O(m) 2) space complexity O(1) where m is  the length of pattern. The searching phase time complexity takes 1)  O(m+α ) in average case 2) O(n/m) in the best case and 3) O(n) in  the worst case, where α is the number of comparing leading to  mismatch and n is the length of input text.

Keywords: String matching, inverted list, inverted index, pattern, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
10664 University Ranking Systems – From League Table to Homogeneous Groups of Universities

Authors: M. Jarocka

Abstract:

The paper contains a review of the literature in terms of the critical analysis of methodologies of university ranking systems. Furthermore, the initiatives supported by the European Commission (U-Map, U-Multirank) and CHE Ranking are described. Special attention is paid to the tendencies in the development of ranking systems. According to the author, the ranking organizations should abandon the classic form of ranking, namely a hierarchical ordering of universities from “the best" to “the worse". In the empirical part of this paper, using one of the method of cluster analysis called k-means clustering, the author presents university classifications of the top universities from the Shanghai Jiao Tong University-s (SJTU) Academic Ranking of World Universities (ARWU).

Keywords: Classification, cluster analysis, ranking, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
10663 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi

Abstract:

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
10662 Tuberculosis Modelling Using Bio-PEPA Approach

Authors: Dalila Hamami, Baghdad Atmani

Abstract:

Modelling is a widely used tool to facilitate the evaluation of disease management. The interest of epidemiological models lies in their ability to explore hypothetical scenarios and provide decision makers with evidence to anticipate the consequences of disease incursion and impact of intervention strategies.

All models are, by nature, simplification of more complex systems. Models that involve diseases can be classified into different categories depending on how they treat the variability, time, space, and structure of the population. Approaches may be different from simple deterministic mathematical models, to complex stochastic simulations spatially explicit.

Thus, epidemiological modelling is now a necessity for epidemiological investigations, surveillance, testing hypotheses and generating follow-up activities necessary to perform complete and appropriate analysis.

The state of the art presented in the following, allows us to position itself to the most appropriate approaches in the epidemiological study.

Keywords: Bio-PEPA, Cellular automata, Epidemiological modelling, multi agent system, ordinary differential equations, PEPA, Process Algebra, Tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
10661 Possibilities of Mathematical Modelling of Explosive Substance Aerosol and Vapour Dispersion in the Atmosphere

Authors: A. Bumbová, J. Kellner, J. Navrátil, D. Pluskal, M. Kozubková, E. Kozubek

Abstract:

The paper deals with the possibilities of modelling vapour propagation of explosive substances in the FLUENT software. With regard to very low tensions of explosive substance vapours the experiment has been verified as exemplified by mononitrotoluene. Either constant or time variable meteorological conditions have been used for calculation. Further, it has been verified that the eluent source may be time-dependent and may reflect a real situation or the liberation rate may be constant. The execution of the experiment as well as evaluation were clear and it could also be used for modelling vapour and aerosol propagation of selected explosive substances in the atmospheric boundary layer.

Keywords: atmospheric boundary layer, explosive substances, FLUENT software, modelling of propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
10660 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
10659 The Shifting Urban Role of Buildings’ Facades: A Diachronic Analysis of El Korba

Authors: Virginia Bassily, Sherif Goubran

Abstract:

In heritage conservation and revival, much of the focus is placed on the techniques and methods to preserve, restore, and revive heritage structures and locations. However, more attention needs to be drawn to how deterioration happens and its effect on the area’s character and socio-economic status. To this end, this research aims to examine the decline and its effect in the El Korba area in Heliopolis, Cairo, Egypt. El Korba was designed with a unique architectural character to stimulate social and economic life. However, the area has been on a path of physical deterioration that is corroding the social life on its streets. This research uses diachronic analysis in Ibrahim El-Lakkani Boulevard of El Korba based on a previously developed framework that connects buildings’ architectural features to the degree of social interaction in the street to document the changes that the building deterioration could have caused. Architectural features of the street level during both the original state (1906) and the current state (2021) are broken down and categorized in those six parameters to understand their decline or improvement over time. We find that the parameters that have decreased over the years and caused the deterioration are complexity and architectural character, permeability, territoriality and personalization, and physical comfort.  Based on these findings, revival projects can focus on physical parameters that create synergistic benefits by preserving and renewing heritage locations and revitalizing their socio-economic potential.

Keywords: Architectural character, heritage building conservation, enclosure, ground-floor use, El Korba, visual and physical permeability, personalization, physical comfort, social life, territoriality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
10658 Small Signal Stability Assessment of MEPE Test System in Free and Open Source Software

Authors: Kyaw Myo Lin

Abstract:

This paper presents small signal stability study carried over the 140-Bus, 31-Machine, 5-Area MEPE system and validated on free and open source software: PSAT. Well-established linearalgebra analysis, eigenvalue analysis, is employed to determine the small signal dynamic behavior of test system. The aspects of local and interarea oscillations which may affect the operation and behavior of power system are analyzed. Eigenvalue analysis is carried out to investigate the small signal behavior of test system and the participation factors have been determined to identify the participation of the states in the variation of different mode shapes. Also, the variations in oscillatory modes are presented to observe the damping performance of the test system.

Keywords: Eigenvalue analysis, Mode shapes, MEPE test system, Participation factors, Power System oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
10657 Round Addition Differential Fault Analysis on Lightweight Block Ciphers with On-the-Fly Key Scheduling

Authors: Hideki Yoshikawa, Masahiro Kaminaga, Arimitsu Shikoda, Toshinori Suzuki

Abstract:

Round addition differential fault analysis using operation skipping for lightweight block ciphers with on-the-fly key scheduling is presented. For 64-bit KLEIN, it is shown that only a pair of correct and faulty ciphertexts can be used to derive the secret master key. For PRESENT, one correct ciphertext and two faulty ciphertexts are required to reconstruct the secret key. Furthermore, secret key extraction is demonstrated for the LBlock Feistel-type lightweight block cipher.

Keywords: Differential Fault Analysis (DFA), round addition, block cipher, on-the-fly key schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
10656 Adaptive Kernel Filtering Used in Video Processing

Authors: Rasmus Engholm, Eva B. Vedel Jensen, Henrik Karstoft

Abstract:

In this paper we present a noise reduction filter for video processing. It is based on the recently proposed two dimensional steering kernel, extended to three dimensions and further augmented to suit the spatial-temporal domain of video processing. Two alternative filters are proposed - the time symmetric kernel and the time asymmetric kernel. The first reduces the noise on single sequences, but to handle the problems at scene shift the asymmetric kernel is introduced. The performance of both are tested on simulated data and on a real video sequence together with the existing steering kernel. The proposed kernels improves the Rooted Mean Squared Error (RMSE) compared to the original steering kernel method on video material.

Keywords: Adaptive image filtering, noise reduction, kernel methods, video processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
10655 Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method

Authors: Rongguo Yan, Guozheng Yan, Banghua Yang

Abstract:

The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.

Keywords: Colonic pressure activity, erratic fluctuations, fractal dimension and spikes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
10654 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: Spatial analysis, change detection, aerosol, trend analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
10653 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: Fashion, infringement, Blockchain, artificial intelligence, textiles supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
10652 Biogas Potentiality of Agro-wastes Jatropha Fruit Coat

Authors: M.S. Dhanya, N. Gupta, H.C. Joshi, Lata

Abstract:

The present investigation was undertaken to explore the biogas potentiality of Jatropha (Jatropha curcas, Euphorbiaceae) Fruit Coat (JFC) alone and in combination with cattle dung (CD) in various proportions at 15 per cent total solids by batch phase anaerobic digestion for a period of ten weeks HRT (Hydraulic Retention Time) under a temperature of 35°C+1°C. The maximum biogas production was noticed in Cattle dung and Jatropha Fruit Coat in 2:1 ratio with 403.84 L/kg dry matter followed by 3:1,1:2, 1:1 and 1:3 having 329.66, 219.77, 217.79, 203.64 L /kg dm respectively as compared to 178.49 L/kg dm in CD alone. The JFC alone found to produce 91 per cent of total biogas that obtained from Cattle dung. The per cent methane content of the biogas in all the treatments was found on par with Cattle dung.

Keywords: Jatropha Fruit Coat, Cattle dung, Hydraulic Retention Time, Dry matter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
10651 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem

Authors: Ahmad Rabanimotlagh

Abstract:

In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.

Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
10650 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
10649 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
10648 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: Recognition, CNN, convolutional neural network, Yi character, divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748