Search results for: economic efficiency
356 Endeavoring Innovation via Research and Development Management: A Case of Iranian Industrial Sector
Authors: Reihaneh Montazeri Shatouri, Rosmini Omar, Wan Khairuzzaman Wan Ismail
Abstract:
This study aims at investigating factors in research and development (R&D) growth and exploring the role of R&D management in enhancing social innovation and productivity improvement in Iran-s industrial sector. It basically explores the common types of R&D activities and the industries which benefited the most from active R&D units in Iran. The researchers generated qualitative analyses obtained from primary and secondary data. The primary data have been retrieved through interviews with five key players (Managing Director, Internal Manager, General Manager, Executive Manager, and Project Manager) in the industrial sector. The secondary data acquired from an investigation on Mazandaran, a province of northern Iran. The findings highlight Iran-s focuses of R & D on cost reduction and upgrading productivity. Industries that have benefited the most from active R&D units are metallic, machinery and equipment design, and automotive. We rank order the primary effects of R&D on productivity improvement as follows, industry improvement, economic growth, using professional human resources, generating productivity and creativity culture, creating a competitive and innovative environment, and increasing people-s knowledge. Generally, low budget dedication and insufficient supply of highly skilled scientists and engineers are two important obstacles for R&D in Iran. Whereas, R&D has resulted in improvement in Iranian society, transfer of contemporary knowledge into the international market is still lacking.Keywords: Productivity, R&D, Transfer of Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648355 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors
Authors: G. Bumanis, D. Bajare
Abstract:
With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.
Keywords: Alkaline material, buffer capacity, biogas production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057354 An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj
Authors: F. Boustani
Abstract:
Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.Keywords: Hydropower potential, Iran, SHP, Yasuj.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985353 A Short Survey of Integrating Urban Agriculture and Environmental Planning
Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar
Abstract:
The growth of the agricultural sector is known as an essential way to achieve development goals in developing countries. Urban agriculture is a way to reduce the vulnerability of urban populations of the world toward global environmental change. It is a sustainable and efficient system to respond to the environmental, social and economic needs of the city, which leads to urban sustainability. Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as poverty, food security, and environmental problems. In this study, we follow a perspective based on urban agriculture literature in order to indicate the urban agriculture’s benefits in environmental planning strategies in non-western countries like Iran. The methodological approach adopted is based on qualitative approach and documentary studies. A total of 35 articles (mixed quantitative and qualitative methods studies) were studied in final analysis, which are published in relevant journals that focus on this subject. Studies show the wide range of positive benefits of urban agriculture on food security, nutrition outcomes, health outcomes, environmental outcomes, and social capital. However, there was no definitive conclusion about the negative effects of urban agriculture. This paper provides a conceptual and theoretical basis to know about urban agriculture and its roles in environmental planning, and also conclude the benefits of urban agriculture for researchers, practitioners, and policymakers who seek to create spaces in cities for implementation urban agriculture in future.
Keywords: Urban agriculture, environmental planning, urban planning, literature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306352 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects.
Keywords: SCC, concrete, pumice, zeolite, durability, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883351 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment. This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.
Keywords: Activated biochar produced from agriculture waste, ammonium (NH4-N), chemical oxygen demand (COD), greywater, nitrate (NO3-N), total suspended solids (TSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419350 An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices
Authors: Mehmet Altınöz
Abstract:
Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.Keywords: Organization, conventional office, virtual office, communication, communication model, communication functions, communication methods, vertical communication, linear communication, diagonal communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3161349 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries
Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone
Abstract:
Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation. Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions. Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.
Keywords: Design, emissions, fluid catalytic cracking, petroleum refineries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875348 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.
Keywords: Core structure, damping systems, high-rise buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015347 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method
Authors: Amira Mabrouk, Chokri Abdennadher
Abstract:
The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.Keywords: Willingness to pay, value of time, contingent valuation, time value, city toll, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298346 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate
Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly
Abstract:
This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.Keywords: Daylighting, Desert, Energy Efficiency, Shading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236345 The U.S. and Western Europe Role in Resolving the Religious Conflicts in Central Asia
Authors: Zhanar Aldubasheva, Mukhtar Senggirbay, Elnura Assyltayeva
Abstract:
The modern world is experiencing fundamental and dynamic changes. The transformation of international relations; the end of confrontation and successive overcoming of the Cold War consequences have expanded possible international cooperation. The global nuclear conflict threat has been minimized, while a tendency to establish a unipolar world structure with the U.S. economic and power domination is growing. The current world system of international relations, apparently is secular. However, the religious beliefs of one or another nations play a certain (sometimes a key) role, both in the domestic affairs of the individual countries and in the development of bilateral ties. Political situation in Central Asia has been characterized by new factors such as international terrorism; religious extremism and radicalism; narcotrafficking and illicit arms trade of a global character immediately threaten to peace and political stability in Central Asia. The role and influence of Islamic fundamentalism is increasing; political ethnocentrism and the associated aggravation of inter-ethnic relations, the ambiguity of national interests and objectives of major geo-political groups in the Central Asian region regarding the division the political influence, emerge. This article approaches the following issues: the role of Islam in Central Asia; destabilizing factors in Central Asia; Islamic movements in Central Asia, Western Europe and the United States; the United States, Western Europe and Central Asia: religion, politics, ideology, and the US-Central Asia antiterrorism and religious extremism cooperation.
Keywords: USA, Central Asia, religious conflict, terrorism, regional security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742344 Efficacy of Methyl Eugenol and Food-Based Lures in Trapping Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae) on Mango Homestead Trees
Authors: Juliana Amaka Ugwu
Abstract:
Trapping efficiency of methyl eugenol and three locally made food-based lures were evaluated in three locations for trapping of B. dorsalis on mango homestead trees in Ibadan South west Nigeria. The treatments were methyl eugenol, brewery waste, pineapple juice, orange juice, and control (water). The experiment was laid in a Complete Randomized Block Design (CRBD) and replicated three times in each location. Data collected were subjected to analysis of variance and significant means were separated by Turkey’s test. The results showed that B. dorsalis was recorded in all locations of study. Methyl eugenol significantly (P < 0.05) trapped higher population of B. dorsalis in all the study area. The population density of B. dorsalis was highest during the ripening period of mango in all locations. The percentage trapped flies after 7 weeks were 77.85%-82.38% (methyl eugenol), 7.29%-8.64% (pineapple juice), 5.62-7.62% (brewery waste), 4.41%-5.95% (orange juice), and 0.24-0.47% (control). There were no significance differences (p > 0.05) on the population of B. dorsalis trapped in all locations. Similarly, there were no significant differences (p > 0.05) on the population of flies trapped among the food attractants. However, the three food attractants significantly (p < 0.05) trapped higher flies than control. Methyl eugenol trapped only male flies while brewery waste and other food based attractants trapped both male and female flies. The food baits tested were promising attractants for trapping B. dorsalis on mango homestead tress, hence increased dosage could be considered for monitoring and mass trapping as management strategies against fruit fly infestation.
Keywords: Attractants, trapping, mango, Bactrocera dorsalis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763343 Globalisation, ICTs and National Identity: The Consequences of ICT Policy in Malaysia
Authors: Abd Rasid Abd Rahman
Abstract:
For the past thirty years the Malaysian economy has been said to contribute well to the progress of the nations. However, the intensification of global economy activity and the extensive use of Information Communication Technologies (ICTs) in recent years are challenging government-s effort to further develop Malaysian society. The competition posed by the low wage economies such as China and Vietnam have made the government realise the importance of engaging in high-skill and high technology industries. It is hoped this will be the basis of attracting more foreign direct investment (FDI) in order to help the country to compete in globalised world. Using Vision 2020 as it targeted vision, the government has decided to engage in the use of ICTs and introduce many policies pertaining to it. Mainly based on the secondary analysis approach, the findings show that policy pertaining to ICTs in Malaysia contributes to economic growth, but the consequences of this have resulted in greater division within society. Although some of the divisions such as gender and ethnicity are narrowing down, the gap in important areas such as regions and class differences is becoming wider. The widespread use of ICTs might contribute to the further establishment of democracy in Malaysia, but the increasing number of foreign entities such as FDI and foreign workers, cultural hybridisation and to some extent cultural domination are contributing to neocolonialism in Malaysia. This has obvious consequences for the government-s effort to create a Malaysian national identity. An important finding of this work is that there are contradictions within ICT policy between the effort to develop the economy and society.
Keywords: Globalisation, ICTs, ICT Policy, Malaysia, National Identity, Vision 2020
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847342 Integrated Subset Split for Balancing Network Utilization and Quality of Routing
Authors: S. V. Kasmir Raja, P. Herbert Raj
Abstract:
The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.
Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394341 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks
Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang
Abstract:
The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.Keywords: Femtocell networks, game theory, interference mitigation, spectrum allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738340 Removal of Hydrogen Sulphide from Air by Means of Fibrous Ion Exchangers
Authors: H. Wasag
Abstract:
The removal of hydrogen sulphide is required for reasons of health, odour problems, safety and corrosivity problems. The means of removing hydrogen sulphide mainly depend on its concentration and kind of medium to be purified. The paper deals with a method of hydrogen sulphide removal from the air by its catalytic oxidation to elemental sulphur with the use of Fe-EDTA complex. The possibility of obtaining fibrous filtering materials able to remove small concentrations of H2S from the air were described. The base of these materials is fibrous ion exchanger with Fe(III)- EDTA complex immobilized on their functional groups. The complex of trivalent iron converts hydrogen sulphide to elemental sulphur. Bivalent iron formed in the reaction is oxidized by the atmospheric oxygen, so complex of trivalent iron is continuously regenerated and the overall process can be accounted as pseudocatalytic. In the present paper properties of several fibrous catalysts based on ion exchangers with different chemical nature (weak acid,weak base and strong base) were described. It was shown that the main parameters affecting the process of catalytic oxidation are:concentration of hydrogen sulphide in the air, relative humidity of the purified air, the process time and the content of Fe-EDTA complex in the fibres. The data presented show that the filtering layers with anion exchange package are much more active in the catalytic processes of hydrogen sulphide removal than cation exchanger and inert materials. In the addition to the nature of the fibres relative air humidity is a critical factor determining efficiency of the material in the air purification from H2S. It was proved that the most promising carrier of the Fe-EDTA catalyst for hydrogen sulphide oxidation are Fiban A-6 and Fiban AK-22 fibres.
Keywords: hydrogen sulphide, catalytic oxidation, odour control, ion exchange, fibrous ion exchangers, air deodorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498339 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS
Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren
Abstract:
An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.
Keywords: Lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858338 The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan
Abstract:
Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from “extensive” to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts’ judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same.
Keywords: Evaluation, green residential building, grey clustering method, group AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826337 Interoperable CNC System for Turning Operations
Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case
Abstract:
The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988336 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing
Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar
Abstract:
Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.
Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3973335 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.
Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048334 Climate Change and Food Security: The Legal Aspects with Special Focus on the European Union
Authors: M. Adamczak-Retecka, O. Hołub-Śniadach
Abstract:
Dangerous of climate change is now global problem and as such has a strategic priority also for the European Union. Europe and European citizens try to do their best to cut greenhouse gas emissions, moreover they substantially encourage other nations and regions to follow the same way. The European Commission and a number of Member States have developed adaptation strategies in order to help strengthen EU's resilience to the inevitable impacts of climate change. The EU has long been a driving force in international negotiations on climate change and was instrumental in the development of the UN Framework Convention on Climate Change. As the world's leading donor of development aid, the EU also provides substantial funding to help developing countries tackle climate change problem. Global warming influences human health, biodiversity, ecosystems but also many social and economic sectors. The aim of this paper is to focus on impact of claimant change on for food security. Food security challenges are directly related to globalization, climate change. It means that current and future food policy is exposed to all cross-cutting and that must be linked with environmental and climate targets, which supposed to be achieved. In the 7th EAP —The new general Union Environment Action Program to 2020, called “Living well, within the limits of our planet” EU has agreed to step up its efforts to protect natural capital, stimulate resource efficient, low carbon growth and innovation, and safeguard people’s health and wellbeing– while respecting the Earth’s natural limits.
Keywords: Climate change, EU law, food policy, food security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851333 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.
Keywords: Harmonics, passive filter, power factor, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190332 Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites
Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar
Abstract:
In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.
Keywords: Nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269331 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907330 Travel Time Evaluation of an Innovative U-Turn Facility on Urban Arterial Roadways
Authors: Ali Pirdavani, Tom Brijs, Tom Bellemans, Geert Wets, Koen Vanhoof
Abstract:
Signalized intersections on high-volume arterials are often congested during peak hours, causing a decrease in through movement efficiency on the arterial. Much of the vehicle delay incurred at conventional intersections is caused by high left-turn demand. Unconventional intersection designs attempt to reduce intersection delay and travel time by rerouting left-turns away from the main intersection and replacing it with right-turn followed by Uturn. The proposed new type of U-turn intersection is geometrically designed with a raised island which provides a protected U-turn movement. In this study several scenarios based on different distances between U-turn and main intersection, traffic volume of major/minor approaches and percentage of left-turn volumes were simulated by use of AIMSUN, a type of traffic microsimulation software. Subsequently some models are proposed in order to compute travel time of each movement. Eventually by correlating these equations to some in-field collected data of some implemented U-turn facilities, the reliability of the proposed models are approved. With these models it would be possible to calculate travel time of each movement under any kind of geometric and traffic condition. By comparing travel time of a conventional signalized intersection with U-turn intersection travel time, it would be possible to decide on converting signalized intersections into this new kind of U-turn facility or not. However comparison of travel time is not part of the scope of this research. In this paper only travel time of this innovative U-turn facility would be predicted. According to some before and after study about the traffic performance of some executed U-turn facilities, it is found that commonly, this new type of U-turn facility produces lower travel time. Thus, evaluation of using this type of unconventional intersection should be seriously considered.Keywords: Innovative U-turn facility, Microsimulation, Traveltime, Unconventional intersection design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340329 Feasibility Study for a Castor oil Extraction Plant in South Africa
Authors: Mohamed Belaid, Edison Muzenda, Getrude Mitilene, Mansoor Mollagee
Abstract:
A feasibility study for the design and construction of a pilot plant for the extraction of castor oil in South Africa was conducted. The study emphasized the four critical aspects of project feasibility analysis, namely technical, financial, market and managerial aspects. The technical aspect involved research on existing oil extraction technologies, namely: mechanical pressing and solvent extraction, as well as assessment of the proposed production site for both short and long term viability of the project. The site is on the outskirts of Nkomazi village in the Mpumalanga province, where connections for water and electricity are currently underway, potential raw material supply proves to be reliable since the province is known for its commercial farming. The managerial aspect was evaluated based on the fact that the current producer of castor oil will be fully involved in the project while receiving training and technical assistance from Sasol Technology, the TSC and SEDA. Market and financial aspects were evaluated and the project was considered financially viable with a Net Present Value (NPV) of R2 731 687 and an Internal Rate of Return (IRR) of 18% at an annual interest rate of 10.5%. The payback time is 6years for analysis over the first 10 years with a net income of R1 971 000 in the first year. The project was thus found to be feasible with high chance of success while contributing to socio-economic development. It was recommended for lab tests to be conducted to establish process kinetics that would be used in the initial design of the plant.Keywords: Mechanical pressing, Net Present Value, Oilextraction, Project feasibility, Solvent extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6079328 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943327 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management
Authors: Marilena Ianculescu, Adriana Alexandru
Abstract:
Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.Keywords: Health management, Internet of Health Things, remote monitoring, senior patient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636