Search results for: vehicle routing problem.
990 Analysis of Web User Identification Methods
Authors: Renáta Iváncsy, Sándor Juhász
Abstract:
Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. One of the key issues in the preprocessing phase is to identify web users. Identifying users based on web log files is not a straightforward problem, thus various methods have been developed. There are several difficulties that have to be overcome, such as client side caching, changing and shared IP addresses and so on. This paper presents three different methods for identifying web users. Two of them are the most commonly used methods in web log mining systems, whereas the third on is our novel approach that uses a complex cookie-based method to identify web users. Furthermore we also take steps towards identifying the individuals behind the impersonal web users. To demonstrate the efficiency of the new method we developed an implementation called Web Activity Tracking (WAT) system that aims at a more precise distinction of web users based on log data. We present some statistical analysis created by the WAT on real data about the behavior of the Hungarian web users and a comprehensive analysis and comparison of the three methodsKeywords: Data preparation, Tracking individuals, Web useridentification, Web usage mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396989 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection
Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar
Abstract:
Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.
Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299988 An Efficient 3D Animation Data Reduction Using Frame Removal
Authors: Jinsuk Yang, Choongjae Joo, Kyoungsu Oh
Abstract:
Existing methods in which the animation data of all frames are stored and reproduced as with vertex animation cannot be used in mobile device environments because these methods use large amounts of the memory. So 3D animation data reduction methods aimed at solving this problem have been extensively studied thus far and we propose a new method as follows. First, we find and remove frames in which motion changes are small out of all animation frames and store only the animation data of remaining frames (involving large motion changes). When playing the animation, the removed frame areas are reconstructed using the interpolation of the remaining frames. Our key contribution is to calculate the accelerations of the joints of individual frames and the standard deviations of the accelerations using the information of joint locations in the relevant 3D model in order to find and delete frames in which motion changes are small. Our methods can reduce data sizes by approximately 50% or more while providing quality which is not much lower compared to original animations. Therefore, our method is expected to be usefully used in mobile device environments or other environments in which memory sizes are limited.
Keywords: Data Reduction, Interpolation, Vertex Animation, 3D Animation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665987 Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization
Authors: Wan-Hyun Cho, In-Seop Na, Seong-ChaeSeo, Sang-Kyoon Kim, Soon-Young Park
Abstract:
In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.
Keywords: Image defogging, Image restoration, Atmospheric veil, Transmission, Variational approach, Euler-Lagrange equation, Image enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945986 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor
Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen
Abstract:
With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.
Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449985 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks
Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan
Abstract:
In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911984 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model
Authors: Banashree N. P., R. Vasanta
Abstract:
Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762983 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.
Keywords: Parameter calibration, sequential quadratic programming, Stochastic User Equilibrium, traffic assignment, transportation planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134982 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045981 Thailand and Procession of Trafficking Human Beings (Women and Children)
Authors: Kawinphat Lertpongmanee
Abstract:
The problems of trafficking human beings were continuously violent in Thailand. The problems occurred from a variety of factors such as unemployment, agricultural workers’ urban immigration, sex tour, attitude of materialism society, divorced family, unsavourily effected law, and officers’ ignorance. The purposes of this study were to study the structure, connection, a number of trafficking human beings in Thailand. Qualitative and quantitative and results of previous research were used in this research. The previous procurers, interested persons, experienced people, human beings-aiding organization, and women-children rights organization were interviewed in depth. The field was used in a variety of regions. The findings showed that the structure and connection of trafficking human beings and their values are $8,750 million. There are 240,000 people in trafficked human beings. The trend of trafficking human beings grows continuously. It is changed according to economic circumstance, society and culture, and law. The state must be aware of its problem. The law is enacted by adding high penalty for serious fear.
Keywords: Human Trade, Prostitution trafficking, trafficking in women and children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622980 A Black-box Approach for Response Quality Evaluation of Conversational Agent Systems
Authors: Ong Sing Goh, C. Ardil, Wilson Wong, Chun Che Fung
Abstract:
The evaluation of conversational agents or chatterbots question answering systems is a major research area that needs much attention. Before the rise of domain-oriented conversational agents based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when chatterbots began to become more domain specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time to achieve high quality responses. This paper discusses the inappropriateness of the existing measures for response quality evaluation and the call for new standard measures and related considerations are brought forward. As a short-term solution for evaluating response quality of conversational agents, and to demonstrate the challenges in evaluating systems of different nature, this research proposes a blackbox approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems, AnswerBus, START and AINI.
Keywords: Evaluation, conversational agents, Response Quality, chatterbots
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930979 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237978 N-Grams: A Tool for Repairing Word Order Errors in Ill-formed Texts
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou, Konstantinos Mamouras
Abstract:
This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. A possible way for reordering the words is to use all the permutations. The problem is that for a sentence with length N words the number of all permutations is N!. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The confusion matrix technique has been designed in order to reduce the search space among permuted sentences. The limitation of search space is succeeded using the statistical inference of N-grams. The results of this technique are very interesting and prove that the number of permuted sentences can be reduced by 98,16%. For experimental purposes a test set of TOEFL sentences was used and the results show that more than 95% can be repaired using the proposed method.
Keywords: Permutations filtering, Statistical language model N-grams, Word order errors, TOEFL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671977 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation
Authors: M. Habchi, S.M. Mesli, M. Kotbi
Abstract:
The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.
Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471976 Effect of Different Treatments on Heavy Metal Concentration in Sugar Cane Molasses
Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed M. Naguib, Mohamed Fadel
Abstract:
Cane molasses is used as a raw material for the production of baker’s yeast (Saccharomyces cerevisiae) in Egypt. The high levels of heavy metals in molasses cause a critical problem during fermentation and cause various kinds of technological difficulties (yield and quality of yeast become lower). The aim of the present study was to determine heavy metal concentrations (cadmium, nickel, lead, and copper) in crude and treated molasses obtained from the storage tanks of the baker’s yeast factory through four seasons. Also, the effect of crude molasses treatment by different methods (at laboratory scale) on heavy metals reduction and its comparison with factory treated molasses were conducted. The molasses samples obtained at autumn season had the highest values of all the studied heavy metals. The molasses treated by cation exchange resin then sulfuric acid had the lowest concentrations of heavy metals compared with other treatments.
Keywords: Molasses, baker’s yeast, heavy metals, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497975 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.
Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546974 An Algorithm for Secure Visible Logo Embedding and Removing in Compression Domain
Authors: Hongyuan Li, Guang Liu, Yuewei Dai, Zhiquan Wang
Abstract:
Digital watermarking is the process of embedding information into a digital signal which can be used in DRM (digital rights managements) system. The visible watermark (often called logo) can indicate the owner of the copyright which can often be seen in the TV program and protects the copyright in an active way. However, most of the schemes do not consider the visible watermark removing process. To solve this problem, a visible watermarking scheme with embedding and removing process is proposed under the control of a secure template. The template generates different version of watermarks which can be seen visually the same for different users. Users with the right key can completely remove the watermark and recover the original image while the unauthorized user is prevented to remove the watermark. Experiment results show that our watermarking algorithm obtains a good visual quality and is hard to be removed by the illegally users. Additionally, the authorized users can completely remove the visible watermark and recover the original image with a good quality.Keywords: digital watermarking, visible and removablewatermark, secure template, JPEG compression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539973 Data Rate Based Grouping Scheme for Cooperative Communications in Wireless LANs
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards provide multiple transmission rates, which can be changed dynamically according to the channel condition. Cooperative communications were introduced to improve the overall performance of wireless LANs with the help of relay nodes with higher transmission rates. The cooperative communications are based on the fact that the transmission is much faster when sending data packets to a destination node through a relay node with higher transmission rate, rather than sending data directly to the destination node at low transmission rate. To apply the cooperative communications in wireless LAN, several MAC protocols have been proposed. Some of them can result in collisions among relay nodes in a dense network. In order to solve this problem, we propose a new protocol. Relay nodes are grouped based on their transmission rates. And then, relay nodes only in the highest group try to get channel access. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and collision probability.
Keywords: Cooperative communications, MAC protocol, relay node, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910972 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962971 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476970 Towards a Load Balancing Framework for an SMS–Based Service Invocation Environment
Authors: Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, Siyabonga S. Cebekhulu
Abstract:
The drastic increase in the usage of SMS technology has led service providers to seek for a solution that enable users of mobile devices to access services through SMSs. This has resulted in the proposal of solutions towards SMS-based service invocation in service oriented environments. However, the dynamic nature of service-oriented environments coupled with sudden load peaks generated by service request, poses performance challenges to infrastructures for supporting SMS-based service invocation. To address this problem we adopt load balancing techniques. A load balancing model with adaptive load balancing and load monitoring mechanisms as its key constructs is proposed. The load balancing model then led to realization of Least Loaded Load Balancing Framework (LLLBF). Evaluation of LLLBF benchmarked with round robin (RR) scheme on the queuing approach showed LLLBF outperformed RR in terms of response time and throughput. However, LLLBF achieved better result in the cost of high processing power.Keywords: SMS (Short Message Service), LLLBF (Least Loaded Load Balancing Framework), Service Oriented Computing (SOC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646969 Unlocking Tourism Value through a Tourist Experience Management Paradigm
Authors: Siphiwe P. Mandina, Tinashe Shamuyashe
Abstract:
Tourism has become a topical issue amongst academics and practitioners due to its potential to contribute significantly towards an economy’s GDP. The problem underpinning this research is the fact that the major attraction, Victoria Falls, is being marketed in neighboring countries like South Africa, Botswana and Zambia with tour operators providing just day trips to the Victoria Falls. This has deprived Zimbabwe of income from tourism with tourists making day trips and actually not spending nights in Zimbabwe. This therefore calls for cutting edge marketing strategies that are superior to or inimitable by competing nations such as South Africa and Zambia. This study proposes a shift towards an experience management paradigm in the tourism sector. A qualitative research was adopted for this study, and findings of this study were generalized across different tourism contexts, therefore making the survey based research design more appropriate. The target population for this study is tourists visiting Zimbabwe over the period 2016 and ZTA visitor database acquired from the Department of Immigration will form the sampling frame for the purposes of this study.
Keywords: Competitiveness, tourist arrivals, tourist experience, Zimbabwe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097968 Robust Design of Power System Stabilizers Using Adaptive Genetic Algorithms
Authors: H. Alkhatib, J. Duveau
Abstract:
Genetic algorithms (GAs) have been widely used for global optimization problems. The GA performance depends highly on the choice of the search space for each parameter to be optimized. Often, this choice is a problem-based experience. The search space being a set of potential solutions may contain the global optimum and/or other local optimums. A bad choice of this search space results in poor solutions. In this paper, our approach consists in extending the search space boundaries during the GA optimization, only when it is required. This leads to more diversification of GA population by new solutions that were not available with fixed search space boundaries. So, these dynamic search spaces can improve the GA optimization performances. The proposed approach is applied to power system stabilizer optimization for multimachine power system (16-generator and 68-bus). The obtained results are evaluated and compared with those obtained by ordinary GAs. Eigenvalue analysis and nonlinear system simulation results show the effectiveness of the proposed approach to damp out the electromechanical oscillation and enhance the global system stability.Keywords: Genetic Algorithms, Multiobjective Optimization, Power System Stabilizer, Small Signal Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727967 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes
Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek
Abstract:
This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.Keywords: Control, fuzzy logic, sensitive system, technological proves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802966 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria
Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova
Abstract:
Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.Keywords: Cross-validation, decision tree, lagged variables, short-term forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743965 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176964 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.
Keywords: Microwave, gas reforming, greenhouse gas, microwave receptor, catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055963 Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance
Authors: H. Mehdi, Kh. S. Karimov, A. A. Kavokin
Abstract:
Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.Keywords: Clustering, Correlation analysis, EnvironmentalParameters, Information Gain Ratio, Mental Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826962 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements
Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks
Abstract:
Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.
Keywords: Aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123961 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization
Authors: N. Janjamraj, A. Oonsivilai
Abstract:
This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523