Search results for: Swarm intelligence
346 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537345 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77344 Hybridized Technique to Analyze Workstress Related Data via the StressCafé
Authors: Anusua Ghosh, Andrew Nafalski, Jeffery Tweedale, Maureen Dollard
Abstract:
This paper presents anapproach of hybridizing two or more artificial intelligence (AI) techniques which arebeing used to fuzzify the workstress level ranking and categorize the rating accordingly. The use of two or more techniques (hybrid approach) has been considered in this case, as combining different techniques may lead to neutralizing each other-s weaknesses generating a superior hybrid solution. Recent researches have shown that there is a need for a more valid and reliable tools, for assessing work stress. Thus artificial intelligence techniques have been applied in this instance to provide a solution to a psychological application. An overview about the novel and autonomous interactive model for analysing work-stress that has been developedusing multi-agent systems is also presented in this paper. The establishment of the intelligent multi-agent decision analyser (IMADA) using hybridized technique of neural networks and fuzzy logic within the multi-agent based framework is also described.Keywords: Fuzzy logic, intelligent agent, multi-agent systems, neural network, workplace stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3969343 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848342 Water Quality Trading with Equitable Total Maximum Daily Loads
Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani
Abstract:
Waste Load Allocation (WLA) strategies usually intend to find economic policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.Keywords: Waste load allocation (WLA), Water quality trading (WQT), Total maximum daily loads (TMDLs), Haraz River, Multi objective particle swarm optimization (MOPSO), Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062341 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling
Authors: Adesoji T. Jaiyeola, Josiah Adeyemo
Abstract:
This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861340 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278339 Multiple Intelligence Theory with a View to Designing a Classroom for the Future
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology is not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen-year-old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.
Keywords: Multiple Intelligences, role play, performance assessment, formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548338 Opportunities and Optimization of the Our Eyes Initiative as the Strategy for Counter-Terrorism in ASEAN
Authors: Chastiti Mediafira Wulolo, Tri Legionosuko, Suhirwan, Yusuf
Abstract:
Terrorism and radicalization have become a common threat to every nation in this world. As a part of the asymmetric warfare threat, terrorism and radicalization need a complex strategy as the problem solver. One such way is by collaborating with the international community. The Our Eyes Initiative (OEI), for example, is a cooperation pact in the field of intelligence information exchanges related to terrorism and radicalization initiated by the Indonesian Ministry of Defence. The pact has been signed by Indonesia, Philippines, Malaysia, Brunei Darussalam, Thailand, and Singapore. This cooperation mostly engages military acts as a central role, but it still requires the involvement of various parties such as the police, intelligence agencies and other government institutions. This paper will use a qualitative content analysis method to address the opportunity and enhance the optimization of OEI. As the result, it will explain how OEI takes the opportunities as the strategy for counter-terrorism by building it up as the regional cooperation, building the legitimacy of government and creating the legal framework of the information sharing system.
Keywords: Our Eyes Initiative, terrorism, counter-terrorism, ASEAN, cooperation, strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966337 Interactive Methods of Design Education as the Principles of Social Implications of Modern Communities
Authors: Pelin Yildiz
Abstract:
The term interactive education indicates the meaning related with multidisciplinary aspects of distance education following contemporary means around a common basis with different functional requirements. The aim of this paper is to reflect the new techniques in education with the new methods and inventions. These methods are better supplied by interactivity. The integration of interactive facilities in the discipline of education with distance learning is not a new concept but in addition the usage of these methods on design issue is newly being adapted to design education. In this paper the general approach of this method and after the analysis of different samples, the advantages and disadvantages of these approaches are being identified. The method of this paper is to evaluate the related samples and then analyzing the main hypothesis. The main focus is to mention the formation processes of this education. Technological developments in education should be filtered around the necessities of the design education and the structure of the system could then be formed or renewed. The conclusion indicates that interactive methods of education in design issue is a meaning capturing not only technical and computational intelligence aspects but also aesthetical and artistic approaches coming together around the same purpose.Keywords: Interactive education, distance learning, designeducation, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642336 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening
Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu
Abstract:
Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.
Keywords: Breast Cancer Screening, Radiology, Thermalytix, Artificial Intelligence, Thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830335 Augmenting People's Creative Idea Generation Using an Artificial Intelligent Sketching Collaborator
Authors: Joseph Maloba Makokha
Abstract:
Idea generation is an important part of the design process, and many strategies to support this stage have been developed. As artificial intelligence (AI) gains adoption in many domains, we need to understand its role, if any, in the design process. This paper introduces the concept of a “Disruptive Interjector”, an AI system that frequently interjects with suggestions based on observing what a user does. The concept emanates from a study that was conducted with pairs of humans on one hand, and human-AI pairs on the other collaborating on idea generation by sketching. Results from a study show that participants who collaborated with, and took cues from the AI sketch suggestions generated more ideas; and also had more ideas ranked by experts as “creative” compared to two humans working together on the same tasks. It is notable that while researchers from diverse fields of engineering, psychology, art and others have explored conditions and environments that enhance people's creativity - and have provided insights on creativity in general - there still exists a gap on the role that AI can play on creativity. We attempt to narrow this gap.
Keywords: Artificial intelligence, design collaboration, creativity, human-machine collaboration, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054334 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management
Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet
Abstract:
This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.
Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686333 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem
Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom
Abstract:
This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.
Keywords: PSO, SA, N-queen, CSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684332 Spatial Abilities, Memory and Intellect of Drivers with Different Level of Professional Experience
Authors: N. Khon, A. Kim, T. Mukhitdinova
Abstract:
The aim of this research was to reveal the link between mental variables, such as spatial abilities, memory, intellect and professional experience of drivers. Participants were allocated to four groups: no experience, inexperienced, skilled and professionals (total 85 participants). The level of ability for spatial navigation and indicator of nonverbal memory grow along the process of accumulation of driving experience. At high levels of driving experience, this tendency is especially noticeable. The professionals having personal achievements in driving (racing) differ from skilled drivers in better feeling of direction, which is specific for them not just in a short-term situation of an experimental task, but also in life-size perspective. The level of ability of mental rotation does not grow with the growth of driving experience, which confirms the multiple intelligence theory according to which spatial abilities represent specific, other than logical intelligence type of intellect. The link between spatial abilities, memory, intellect and professional experience of drivers seems to be different relating spatial navigation or mental rotation as different kinds of spatial abilities.
Keywords: Memory, spatial abilities, intellect, drivers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232331 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO
Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri
Abstract:
This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.Keywords: DPSO, TEP, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476330 Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly
Authors: Gunther Reinhart, Marwan Radi
Abstract:
Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.Keywords: Assembly, Force Feedback, Industrial Robot, Teleassembly, Telepresence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244329 Self-evolving Neural Networks Based On PSO and JPSO Algorithms
Authors: Abdussamad Ismail, Dong-Sheng Jeng
Abstract:
A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.
Keywords: Neural networks, Topology evolution, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808328 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773327 A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing
Abstract:
With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.
Keywords: Air pollution, particulate matter, AQI, correlation coefficient, air pollution prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582326 Clinical Decision Support for Disease Classification based on the Tests Association
Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon
Abstract:
Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634325 Distributed Multi-Agent Based Approach on an Intelligent Transportation Network
Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar
Abstract:
With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of human, vehicle, roadside infrastructure and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the paper proposes a distributed multi-agent C-ITS. The system consists of Roadside Subsystem, Vehicle Subsystem and Personal Subsystem. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.
Keywords: Distributed system, artificial intelligence, multi-agent, Cooperative Intelligent Transportation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574324 Artificial Intelligence Techniques Applications for Power Disturbances Classification
Authors: K.Manimala, Dr.K.Selvi, R.Ahila
Abstract:
Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.
Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557323 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks
Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha
Abstract:
Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.
Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702322 Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC
Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa
Abstract:
This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).Keywords: SystemC, modeling, simulation, CSMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660321 A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision
Authors: Ahmad Sharieh, R Bremananth
Abstract:
Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.
Keywords: Artificial neural network, back propagation gaming, Leverberg-Marquardt, minimax procedure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937320 Optimal Generation Expansion Planning Strategy with Carbon Trading
Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai
Abstract:
Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676319 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition
Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei
Abstract:
Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948318 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360317 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259