Search results for: Network reduction
3885 A New Pattern for Handwritten Persian/Arabic Digit Recognition
Authors: A. Harifi, A. Aghagolzadeh
Abstract:
The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.
Keywords: Pattern recognition, Persian digits, NeuralNetwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16773884 Learning Block Memories with Metric Networks
Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez
Abstract:
An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.Keywords: Hebbian learning, image recognition, small world, spatial information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18653883 Methane versus Carbon Dioxide: Mitigation Prospects
Authors: Alexander J. Severinsky, Allen L. Sessoms
Abstract:
Atmospheric carbon dioxide (CO2) has dominated the discussion around the causes of climate change. This is a reflection of a 100-year time horizon for all greenhouse gases that became a norm. The 100-year time horizon is much too long – and yet, almost all mitigation efforts, including those set in the near-term frame of within 30 years, are still geared toward it. In this paper, we show that for a 30-year time horizon, methane (CH4) is the greenhouse gas whose radiative forcing exceeds that of CO2. In our analysis, we use the radiative forcing of greenhouse gases in the atmosphere, because they directly affect the rise in temperature on Earth. We found that in 2019, the radiative forcing (RF) of methane was ~2.5 W/m2 and that of carbon dioxide was ~2.1 W/m2. Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m2 and ~3.1 W/m2 respectively. There is a substantial spread in the data for anthropogenic and natural methane (CH4) emissions, along with natural gas, (which is primarily CH4), leakages from industrial production to consumption. For this reason, we estimate the minimum and maximum effects of a reduction of these leakages, and assume an effective immediate reduction by 80%. Such action may serve to reduce the annual radiative forcing of all CH4 emissions by ~15% to ~30%. This translates into a reduction of RF by 2050 from ~2.8 W/m2 to ~2.5 W/m2 in the case of the minimum effect that can be expected, and to ~2.15 W/m2 in the case of the maximum effort to reduce methane leakages. Under the BAU, we find that the RF of CO2 will increase from ~2.1 W/m2 now to ~3.1 W/m2 by 2050. We assume a linear reduction of 50% in anthropogenic emission over the course of the next 30 years, which would reduce the radiative forcing of CO2 from ~3.1 W/m2 to ~2.9 W/m2. In the case of "net zero," the other 50% of only anthropogenic CO2 emissions reduction would be limited to being either from sources of emissions or directly from the atmosphere. In this instance, the total reduction would be from ~3.1 W/m2 to ~2.7 W/m2, or ~0.4 W/m2. To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m2, an additional reduction of radiative forcing of CO2 would be approximately 2.7 -2.15 = 0.55 W/m2. In total, one would need to remove ~660 GT of CO2 from the atmosphere in order to match the maximum reduction of current methane leakages, and ~270 GT of CO2 from emitting sources, to reach "negative emissions". This amounts to over 900 GT of CO2.
Keywords: Methane Leakages, Methane Radiative Forcing, Methane Mitigation, Methane Net Zero.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6463882 The Effects of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Yield and Yield Components of Italia Grape Cultivar
Authors: A. Akin
Abstract:
This study was carried out on Italia grape variety (Vitis vinifera L.) in Konya province, Turkey in 2016. The cultivar is five years old and grown on 1103 Paulsen rootstock. It was determined the effects of applications of the Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR+Boric Acid (BA), 1/6 CTR+BA, 1/9 CTR+BA, on yield and yield components of the Italia grape variety. The results were obtained as the highest fresh grape yield (4.74 g) with 1/9 CTR+BA application; the highest cluster weight (220.08 g) with 1/3 CTR application; the highest 100 berry weight (565.85 g) with 1/9 CTR+BA application; as the highest maturity index (49.28) with 1/9 CTR+BA application; as the highest must yield (685.33 ml/kg) with 1/3 CTR+BA and (685.33 ml/kg) with 1/9 CTR+BA applications. To increase the fresh grape yield, 100 berry weight and maturity index in the Italia grape variety, the 1/9 CTR+BA application can be recommended.Keywords: Italia grape variety, boric acid, cluster tip reduction, yield, yield components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9983881 Development of Neural Network Prediction Model of Energy Consumption
Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail
Abstract:
In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26433880 Stereoselective Reduction of Amino Ketone with Sodium Borohydride in the Presence of Metal Chloride. A Simple Pathway to S-Propranolol
Authors: R. Inkum, A. Teerawutgulrag, P. Puangsombat, N. Rakariyatham
Abstract:
Propranolol is worldwide hypertension drug that is active in S-isomer. Patients must use this drug throughout their lives, and this action employsa significant level of expenditure. A simpler synthesis and lower cost can reduce the price for the patient. A sis pathway of S-propranolol starting from protection of (R,S)-propranolol with di-t-butyldicarbonate and then the product is oxidized with pyridiniumchlorochromate. The selective reduction of ketone occurrs with sodiumborohydride in the presence of metal chloride provided S-propranolol.
Keywords: S-propranolol, selective reduction, sodium borohydride, metal chloride
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21593879 Modified Hankel Matrix Approach for Model Order Reduction in Time Domain
Authors: C. B. Vishwakarma
Abstract:
The author presented a method for model order reduction of large-scale time-invariant systems in time domain. In this approach, two modified Hankel matrices are suggested for getting reduced order models. The proposed method is simple, efficient and retains stability feature of the original high order system. The viability of the method is illustrated through the examples taken from literature.
Keywords: Model Order Reduction, Stability, Hankel Matrix, Time-Domain, Integral Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20783878 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9753877 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle
Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna
Abstract:
A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.
Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18133876 Underwater Wireless Sensor Network Layer Design for Reef Restoration
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
Coral Reefs are very important for the majority of marine ecosystems. But, such vital species are under major threat due to the factors such as ocean acidification, overfishing, and coral bleaching. To conserve the coral reefs, reef restoration activities are carried out across the world. After reef restoration, various parameters have to be monitored in order to ensure the overall effectiveness of the reef restoration. Underwater Wireless Sensor Network (UWSN) based monitoring is widely adopted for such long monitoring activities. Since monitoring of coral reef restoration activities is time sensitive, the QoS guarantee offered by the network with respect to delay is vital. So this research focuses on the analytical modeling of network layer delay using Stochastic Network Calculus (SNC). The core focus of the proposed model will be on the analysis of stochastic dependencies between the network flow and deriving the stochastic delay bounds for the flows that traverse in tandem in UWSNs. The derived analytical bounds are evaluated for their effectiveness using discrete event simulations.
Keywords: Coral Reef Restoration, SNC, SFA, PMOO, Tandem of Queues, Delay Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4263875 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: Microgrids, secondary control, multiagent, sampling, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14503874 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31153873 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27763872 Security Engine Management of Router based on Security Policy
Authors: Su Hyung Jo, Ki Young Kim, Sang Ho Lee
Abstract:
Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper relates to a security engine management of router based on a security policy, which is the definition of security function against a network intrusion. This paper explains the security policy and designs the structure of security engine management framework.Keywords: Policy server, security engine, security management, security policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19213871 Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
This paper presents a method for the optimal allocation of Distributed generation in distribution systems. In this paper, our aim would be optimal distributed generation allocation for voltage profile improvement and loss reduction in distribution network. Genetic Algorithm (GA) was used as the solving tool, which referring two determined aim; the problem is defined and objective function is introduced. Considering to fitness values sensitivity in genetic algorithm process, there is needed to apply load flow for decision-making. Load flow algorithm is combined appropriately with GA, till access to acceptable results of this operation. We used MATPOWER package for load flow algorithm and composed it with our Genetic Algorithm. The suggested method is programmed under MATLAB software and applied ETAP software for evaluating of results correctness. It was implemented on part of Tehran electricity distributing grid. The resulting operation of this method on some testing system is illuminated improvement of voltage profile and loss reduction indexes.Keywords: Distributed Generation, Allocation, Voltage Profile, losses, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18943870 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: Artificial neural network, EDM, metal removal rate, modeling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11693869 An Atomic-Domains-Based Approach for Attack Graph Generation
Authors: Fangfang Chen, Chunlu Wang, Zhihong Tian, Shuyuan Jin, Tianle Zhang
Abstract:
Attack graph is an integral part of modeling the overview of network security. System administrators use attack graphs to determine how vulnerable their systems are and to determine what security measures to deploy to defend their systems. Previous methods on AGG(attack graphs generation) are aiming at the whole network, which makes the process of AGG complex and non-scalable. In this paper, we propose a new approach which is simple and scalable to AGG by decomposing the whole network into atomic domains. Each atomic domain represents a host with a specific privilege. Then the process for AGG is achieved by communications among all the atomic domains. Our approach simplifies the process of design for the whole network, and can gives the attack graphs including each attack path for each host, and when the network changes we just carry on the operations of corresponding atomic domains which makes the process of AGG scalable.Keywords: atomic domain, vulnerability, attack graphs, generation, computer security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16553868 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment
Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.
Abstract:
Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.
Keywords: Dual-Stack, Malware, Worm, IPv6;IDS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20053867 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime
Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni
Abstract:
The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.
Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9223866 Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks
Authors: Narendra Singh Yadav, R.P.Yadav
Abstract:
Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.Keywords: AODV, DSDV, MANET, relative performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37623865 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls
Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari
Abstract:
In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.Keywords: Pipe-Forming, Wall Thickness, Finite-element-method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29853864 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.
Keywords: Embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8273863 An Innovative Wireless Sensor Network Protocol Implementation using a Hybrid FPGA Technology
Authors: Danielle Reichel, Antoine Druilhe, Tuan Dang
Abstract:
Traditional development of wireless sensor network mote is generally based on SoC1 platform. Such method of development faces three main drawbacks: lack of flexibility in terms of development due to low resource and rigid architecture of SoC; low capability of evolution and portability versus performance if specific micro-controller architecture features are used; and the rapid obsolescence of micro-controller comparing to the long lifetime of power plants or any industrial installations. To overcome these drawbacks, we have explored a new approach of development of wireless sensor network mote using a hybrid FPGA technology. The application of such approach is illustrated through the implementation of an innovative wireless sensor network protocol called OCARI.Keywords: Hybrid FPGA, Embedded system, Mote, flexibility, durability, OCARI protocol, SoC, Wireless Sensor Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18973862 M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information
Authors: A.Goel, M. Agrawal, P. Gupta Poddar
Abstract:
Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.
Keywords: Orthogonal frequency division multiplexing (OFDM), Peak-to-average power ratio (PAPR), Selected mapping (SLM), Side information (SI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19603861 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network
Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul
Abstract:
In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16373860 Assessment of Pollution Reduction
Authors: Katarzyna Strzała-Osuch
Abstract:
Environmental investments, including ecological projects, relating to the protection of atmosphere are today a need. However, investing in the environment should be based on rational management rules. This comes across a problem of selecting a method to assess substances reduced during projects. Therefore, a method allowing for the assessment of decision rationality has to be found. The purpose of this article is to present and systematise pollution reduction assessment methods and illustrate theoretical analyses with empirical data. Empirical results confirm theoretical considerations, which proved that the only method for judging pollution reduction, free of apparent disadvantages, is the Eco 99-ratio method. To make decisions on environmental projects, financing institutions should take into account a rationality rule. Therefore the Eco 99-ratio method could be applied to make decisions relating to environmental investments in the area of air protection.Keywords: Assessment of pollution reduction, costs of environmental protection, efficiency of environmental investments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13273859 Sustainable Urban Transport Management and Its Strategies
Authors: Touba Amirazodi
Abstract:
Rapid process of urbanism development has increased the demand for some infrastructures such as supplying potable water, electricity network and transportation facilities and etc. Nonefficiency of the existing system with parallel managements of urban traffic management has increased the gap between supply and demand of traffic facilities. A sustainable transport system requires some activities more important than air pollution control, traffic or fuel consumption reduction and the studies show that there is no unique solution for solving complicated transportation problems and solving such a problem needs a comprehensive, dynamic and reliable mechanism. Sustainable transport management considers the effects of transportation development on economic efficiency, environmental issues, resources consumption, land use and social justice and helps reduction of environmental effects, increase of transportation system efficiency as well as improvement of social life and aims to enhance efficiency, goods transportation, provide services with minimum access problems that cannot be realized without reorganization of strategies, policies and plans.Keywords: Sustainable Urban Transport, Environment, Social Justice, Air Pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25253858 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19373857 Exploring Structure of Mobile Ecosystem: Inter-Industry Network Analysis Approach
Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim
Abstract:
As increasing importance of symbiosis and cooperation among mobile communication industries, the mobile ecosystem has been especially highlighted in academia and practice. The structure of mobile ecosystem is quite complex and the ecological role of actors is important to understand that structure. In this respect, this study aims to explore structure of mobile ecosystem in the case of Korea using inter-industry network analysis. Then, the ecological roles in mobile ecosystem are identified using centrality measures as a result of network analysis: degree of centrality, closeness, and betweenness. The result shows that the manufacturing and service industries are separate. Also, the ecological roles of some actors are identified based on the characteristics of ecological terms: keystone, niche, and dominator. Based on the result of this paper, we expect that the policy makers can formulate the future of mobile industry and healthier mobile ecosystem can be constructed.
Keywords: Mobile ecosystem, structure, ecological roles, network analysis, network index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20683856 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302