Search results for: Battery grading algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3638

Search results for: Battery grading algorithm

3368 A New Self-stabilizing Algorithm for Maximal 2-packing

Authors: Zhengnan Shi

Abstract:

In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.

Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
3367 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

Authors: Samir Brahim Belhaouari

Abstract:

By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.

Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
3366 Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

This paper presents a method for the optimal allocation of Distributed generation in distribution systems. In this paper, our aim would be optimal distributed generation allocation for voltage profile improvement and loss reduction in distribution network. Genetic Algorithm (GA) was used as the solving tool, which referring two determined aim; the problem is defined and objective function is introduced. Considering to fitness values sensitivity in genetic algorithm process, there is needed to apply load flow for decision-making. Load flow algorithm is combined appropriately with GA, till access to acceptable results of this operation. We used MATPOWER package for load flow algorithm and composed it with our Genetic Algorithm. The suggested method is programmed under MATLAB software and applied ETAP software for evaluating of results correctness. It was implemented on part of Tehran electricity distributing grid. The resulting operation of this method on some testing system is illuminated improvement of voltage profile and loss reduction indexes.

Keywords: Distributed Generation, Allocation, Voltage Profile, losses, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
3365 Modulation Identification Algorithm for Adaptive Demodulator in Software Defined Radios Using Wavelet Transform

Authors: P. Prakasam, M. Madheswaran

Abstract:

A generalized Digital Modulation Identification algorithm for adaptive demodulator has been developed and presented in this paper. The algorithm developed is verified using wavelet Transform and histogram computation to identify QPSK and QAM with GMSK and M–ary FSK modulations. It has been found that the histogram peaks simplifies the procedure for identification. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB and 12 dB for GMSK and QPSK respectively. When SNR is above 5 dB the throughput of the proposed algorithm is more than 97.8%. The receiver operating characteristics (ROC) has been computed to measure the performance of the proposed algorithm and the analysis shows that the probability of detection (Pd) drops rapidly when SNR is 5 dB and probability of false alarm (Pf) is smaller than 0.3. The performance of the proposed algorithm has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.

Keywords: Bit Error rate, Receiver Operating Characteristics, Software Defined Radio, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
3364 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
3363 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN).We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.

Keywords: Floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3204
3362 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.

Keywords: Vector Quantization, Data Compression, Encoding, Searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
3361 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
3360 FPGA Implementation of RSA Cryptosystem

Authors: Ridha Ghayoula, ElAmjed Hajlaoui, Talel Korkobi, Mbarek Traii, Hichem Trabelsi

Abstract:

In this paper, the hardware implementation of the RSA public-key cryptographic algorithm is presented. The RSA cryptographic algorithm is depends on the computation of repeated modular exponentials. The Montgomery algorithm is used and modified to reduce hardware resources and to achieve reasonable operating speed for FPGA. An efficient architecture for modular multiplications based on the array multiplier is proposed. We have implemented a RSA cryptosystem based on Montgomery algorithm. As a result, it is shown that proposed architecture contributes to small area and reasonable speed.

Keywords: RSA, Cryptosystem, Montgomery, Implementation.FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
3359 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection

Authors: D. Naga Ravi Kiran, C. G. Dethe

Abstract:

Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.

Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
3358 An Efficient Multi Join Algorithm Utilizing a Lattice of Double Indices

Authors: Hanan A. M. Abd Alla, Lilac A. E. Al-Safadi

Abstract:

In this paper, a novel multi join algorithm to join multiple relations will be introduced. The novel algorithm is based on a hashed-based join algorithm of two relations to produce a double index. This is done by scanning the two relations once. But instead of moving the records into buckets, a double index will be built. This will eliminate the collision that can happen from a complete hash algorithm. The double index will be divided into join buckets of similar categories from the two relations. The algorithm then joins buckets with similar keys to produce joined buckets. This will lead at the end to a complete join index of the two relations. without actually joining the actual relations. The time complexity required to build the join index of two categories is Om log m where m is the size of each category. Totaling time complexity to O n log m for all buckets. The join index will be used to materialize the joined relation if required. Otherwise, it will be used along with other join indices of other relations to build a lattice to be used in multi-join operations with minimal I/O requirements. The lattice of the join indices can be fitted into the main memory to reduce time complexity of the multi join algorithm.

Keywords: Multi join, Relation, Lattice, Join indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
3357 Algorithm for Determining the Parameters of a Two-Layer Soil Model

Authors: Adekitan I. Aderibigbe, Fakolujo A. Olaosebikan

Abstract:

The parameters of a two-layer soil can be determined by processing resistivity data obtained from resistivity measurements carried out on the soil of interest. The processing usually entails applying the resistivity data as inputs to an optimisation function. This paper proposes an algorithm which utilises the square error as an optimisation function. Resistivity data from previous works were applied to test the accuracy of the new algorithm developed and the result obtained conforms significantly to results from previous works.

 

Keywords: Algorithm, earthing, resistivity, two-layer soil-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332
3356 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems

Authors: K. Saravanan, R. Anita

Abstract:

Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.

Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
3355 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: Firefly algorithm, metaheuristic algorithm, multilelvel inverter, SHEPWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
3354 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine

Abstract:

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
3353 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast

Abstract:

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Keywords: Computer architecture, parallel computing, NOC, routing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
3352 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
3351 Downtrend Algorithm and Hedging Strategy in Futures Market

Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis

Abstract:

The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.

Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360
3350 Talent Selection for Present Conception of Women Sports Gymnastics and Practical Verification of the Test Battery

Authors: G. Bago, P. Hedbávný, M. Kalichová

Abstract:

The aim of the contribution is to project and consequently verify a testing battery which in practice would facilitate the selection of talented gymnasts for current concept of men´ s gymnastics. Based on study of professional literature a test array consisting of three parts projected – power testing, speed testing and flexibility testing– was projected. The evaluating scales used in the tests are standardized. This test array was applied to girls aged 6 - 7 during recruitment for Sokol Brno I. and SG Pelhrimov Gymnastic Club. After 6 months of training activity the projected set of tests was applied again. The results were evaluated through observation and questionnaire and they were consequently transformed into charts. Recommendation for practice was proposed based on these results.

Keywords: Talent selection, sports gymnastics, power testing, speed testing, flexibility testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
3349 Approximation Incremental Training Algorithm Based on a Changeable Training Set

Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei

Abstract:

The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.

Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
3348 Genetic Algorithm Approach for Solving the Falkner–Skan Equation

Authors: Indu Saini, Phool Singh, Vikas Malik

Abstract:

A novel method based on Genetic Algorithm to solve the boundary value problems (BVPs) of the Falkner–Skan equation over a semi-infinite interval has been presented. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method based on Genetic Algorithm to transform the BVP into initial value problems (IVPs). Genetic Algorithm is used to calculate shooting angle. The initial value problems arisen during shooting are computed by Runge-Kutta Fehlberg method. The numerical solutions obtained by the present method are in agreement with those obtained by previous authors.

Keywords: Boundary Layer Flow, Falkner–Skan equation, Genetic Algorithm, Shooting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
3347 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data mining, k-means, MCOKE, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
3346 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers

Authors: Thomas Fuhrmann

Abstract:

In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
3345 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification

Authors: Ginalber L. O. Serra

Abstract:

This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.

Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
3344 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
3343 Using Multi-Thread Technology Realize Most Short-Path Parallel Algorithm

Authors: Chang-le Lu, Yong Chen

Abstract:

The shortest path question is in a graph theory model question, and it is applied in many fields. The most short-path question may divide into two kinds: Single sources most short-path, all apexes to most short-path. This article mainly introduces the problem of all apexes to most short-path, and gives a new parallel algorithm of all apexes to most short-path according to the Dijkstra algorithm. At last this paper realizes the parallel algorithms in the technology of C # multithreading.

Keywords: Dijkstra algorithm, parallel algorithms, multi-thread technology, most short-path, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
3342 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
3341 Indoor Localization Algorithm and Appropriate Implementation Using Wireless Sensor Networks

Authors: Adeniran Ademuwagun, Alastair Allen

Abstract:

The relationship dependence between RSS and distance in an enclosed environment is an important consideration because it is a factor that can influence the reliability of any localization algorithm founded on RSS. Several algorithms effectively reduce the variance of RSS to improve localization or accuracy performance. Our proposed algorithm essentially avoids this pitfall and consequently, its high adaptability in the face of erratic radio signal. Using 3 anchors in close proximity of each other, we are able to establish that RSS can be used as reliable indicator for localization with an acceptable degree of accuracy. Inherent in this concept, is the ability for each prospective anchor to validate (guarantee) the position or the proximity of the other 2 anchors involved in the localization and vice versa. This procedure ensures that the uncertainties of radio signals due to multipath effects in enclosed environments are minimized. A major driver of this idea is the implicit topological relationship among sensors due to raw radio signal strength. The algorithm is an area based algorithm; however, it does not trade accuracy for precision (i.e the size of the returned area).

Keywords: Anchor nodes, centroid algorithm, communication graph, received signal strength (RSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
3340 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.

Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
3339 An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding

Authors: K. S. Neelukumari, K. B. Jayanthi

Abstract:

In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.

Keywords: Backtracking, test data compression (TDC), x-filling, x-propagating and genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870