Search results for: pairs trading
205 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.
Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400204 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.
Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973203 Signal Transmission Analysis of Differential Pairs Using Semicircle-Shaped Via Structure
Authors: Moonjung Kim, Chang-Ho Hyun, Won-Ho Kim
Abstract:
In this paper, the signal transmission analysis of the semicircle-shaped via structure for the differential pairs is presented in the frequency range up to 10 GHz. In order to improve the signal transmission properties in the differential pairs, single via is separated centrally into two semicircle-shaped sections, which are interconnected with the traces of differential pairs respectively. This via structure make possible to route differential pairs using only one via. In addition, it can improve impedance discontinuity around its region and then enhance the signal transmission properties in the differential pairs. The electrical analysis such as S-parameter calculation and eye diagram simulation has been performed to investigate the improvement of the signal transmission property in the differential pairs with new via structure.Keywords: Differential pairs, signal transmission property, via, S-parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3927202 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.
Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371201 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-
Authors: Hiroki Satou, Kayoko Yamamoto
Abstract:
This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172200 Futures Trading: Design of a Strategy
Authors: Jan Zeman
Abstract:
The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.Keywords: futures trading, decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124199 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection
Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan
Abstract:
This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market
Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167198 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application
Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman
Abstract:
Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.
Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4776197 Downtrend Algorithm and Hedging Strategy in Futures Market
Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis
Abstract:
The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358196 Technical Trading Rules in Emerging Stock Markets
Authors: Stefaan Pauwels, Koen Inghelbrecht, Dries Heyman, Pieter Marius
Abstract:
Literature reveals that many investors rely on technical trading rules when making investment decisions. If stock markets are efficient, one cannot achieve superior results by using these trading rules. However, if market inefficiencies are present, profitable opportunities may arise. The aim of this study is to investigate the effectiveness of technical trading rules in 34 emerging stock markets. The performance of the rules is evaluated by utilizing White-s Reality Check and the Superior Predictive Ability test of Hansen, along with an adjustment for transaction costs. These tests are able to evaluate whether the best model performs better than a buy-and-hold benchmark. Further, they provide an answer to data snooping problems, which is essential to obtain unbiased outcomes. Based on our results we conclude that technical trading rules are not able to outperform a naïve buy-and-hold benchmark on a consistent basis. However, we do find significant trading rule profits in 4 of the 34 investigated markets. We also present evidence that technical analysis is more profitable in crisis situations. Nevertheless, this result is relatively weak.
Keywords: technical trading rules, Reality Check, Superior Predictive Ability, emerging stock markets, data snooping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442195 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.
Keywords: Business processes, discrete-event simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564194 A New Measure of Herding Behavior: Derivation and Implications
Authors: Amina Amirat, Abdelfettah Bouri
Abstract:
If price and quantity are the fundamental building blocks of any theory of market interactions, the importance of trading volume in understanding the behavior of financial markets is clear. However, while many economic models of financial markets have been developed to explain the behavior of prices -predictability, variability, and information content- far less attention has been devoted to explaining the behavior of trading volume. In this article, we hope to expand our understanding of trading volume by developing a new measure of herding behavior based on a cross sectional dispersion of volumes betas. We apply our measure to the Toronto stock exchange using monthly data from January 2000 to December 2002. Our findings show that the herd phenomenon consists of three essential components: stationary herding, intentional herding and the feedback herding.Keywords: Herding behavior, market return, trading volume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301193 The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading
Authors: Abdalla Kablan, Joseph Falzon
Abstract:
This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.Keywords: Financial decision making, High frequency trading, Adaprive neuro-fuzzy systems, moving average strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072192 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network
Authors: Paul Lajbcygier, Seng Lee
Abstract:
Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.
Keywords: Artificial neural networks, co-integration, forecasting, trading rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246191 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.
Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859190 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.
Keywords: Avatar-based, virtual environment, paired learning, individual differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779189 Collaborative Business Strategy of PTT Energy Trading Co. Ltd. for LNG form of Coal Bed Methane in B2B Transaction to Japanese Shareholder, Especially to Electricity and Power Supply Companies
Authors: Shabrina Pritta Radyanti, Harimukti Wandebori
Abstract:
A research study was conducted with an objective to propose a collaborative business strategy of a oil and gas trading company, representing PPT Energy Trading Co., Ltd., with its shareholder, especially electricity and power supply companies for LNG Form of Coal Bed Methane in B2B Transaction. Collaborative business strategy is a strategy to collaborate with other organizations due to have future benefits in both parties, or achieve the business objective through the collaboration of business, its strategy and partners. A structured interview was established to collect the required primary data from the company. Not only interview, but also company’s business plan and annual report were collected and analyzed for the company’s current condition. As the result, this research shows a recommendation to propose a new collaborative strategy with limiting its target market, diversifying product, conducting new business model, and considering other stakeholders.
Keywords: collaborative business strategy, trading company, LNG, coal bed methane
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567188 A Practice of Zero Trust Architecture in Financial Transactions
Authors: L. Wang, Y. Chen, T. Wu, S. Hu
Abstract:
In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for the cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces Software Defined Perimeter (SDP) technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access and significantly improves the security protection capability of Internet transactions. The study achieves: 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading, and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.
Keywords: Zero trust, trading terminal, architecture, network security, cybersecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222187 Optimal Generation Expansion Planning Strategy with Carbon Trading
Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai
Abstract:
Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676186 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
Authors: A. Kablan
Abstract:
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395185 A Study on the Secure ebXML Transaction Models
Authors: Dongkyoo Shin, Dongil Shin, Sukil Cha, Seyoung Kim
Abstract:
ebXML (Electronic Business using eXtensible Markup Language) is an e-business standard, sponsored by UN/CEFACT and OASIS, which enables enterprises to exchange business messages, conduct trading relationships, communicate data in common terms and define and register business processes. While there is tremendous e-business value in the ebXML, security remains an unsolved problem and one of the largest barriers to adoption. XML security technologies emerging recently have extensibility and flexibility suitable for security implementation such as encryption, digital signature, access control and authentication. In this paper, we propose ebXML business transaction models that allow trading partners to securely exchange XML based business transactions by employing XML security technologies. We show how each XML security technology meets the ebXML standard by constructing the test software and validating messages between the trading partners.Keywords: Electronic commerce, e-business standard, ebXML, XML security, secure business transaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748184 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach
Authors: Imen Dhaou
Abstract:
This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.
Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996183 A Query Optimization Strategy for Autonomous Distributed Database Systems
Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam
Abstract:
Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.
Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057182 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.
Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696181 Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants
Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman
Abstract:
This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.
Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Adsorption Capacity, Refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4841180 Critical Issues of Inclusion of Aviation in EU Emissions Trading System
Authors: Jakub Hospodka
Abstract:
This paper dissertates about issues which may occur after next year will be major part of civil aviation in EU included into system of Emission trading. This system should help to fight against global warming and to fulfill Kyoto Protocol commitments of European countries. Main issues mentioned in this paper are connected with problem of radiative forcing from emissions and lack of their monitoring and charging in EU legislative. There are mentioned main differences between industrial emissions and emissions form aviation with notification about possible negative impacts of neglecting these differences. Special attention is dedicated to risk of possible reverse effect of inclusion aviation in EU ETS, which may theoretically occur.Keywords: EU ETS, radiative forcing, aviation, emissiontrading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417179 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production
Authors: Lubomir Machuca, Vit Fara
Abstract:
Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.
Keywords: Desalination, electrodialysis, electrodeionization, fertilizer industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155178 All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time
Authors: Udaya Kumar Reddy K. R, K. Viswanathan Iyer
Abstract:
Given a simple connected unweighted undirected graph G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a new algorithm for the all-pairs shortest-path (APSP) problem. The running time of our algorithm is in O(n2 log n). This bound is an improvement over previous best known O(n2.376) time bound of Raimund Seidel (1995) for general graphs. The algorithm presented does not rely on fast matrix multiplication. Our algorithm with slight modifications, enables us to compute the APSP problem for unweighted directed graph in time O(n2 log n), improving a previous best known O(n2.575) time bound of Uri Zwick (2002).
Keywords: Distance in graphs, Dynamic programming, Graphalgorithms, Shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3690177 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.
Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498176 Terminal Wiener Index for Graph Structures
Authors: J. Baskar Babujee, J. Senbagamalar,
Abstract:
The topological distance between a pair of vertices i and j, which is denoted by d(vi, vj), is the number of edges of the shortest path joining i and j. The Wiener index W(G) is the sum of distances between all pairs of vertices of a graph G. W(G) = i Keywords:
Graph,
Degree,
Distance,
Pendent vertex,
Wiener index,
Tree.