Search results for: heart rate variability
3103 Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates
Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, A. Naseem, N. G. Karthick, T. K. Abdul Jaleel, Paul K.Joseph
Abstract:
It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy. In our analysis, based on the method developed, it is observed that heart rate variability is significantly different for DM patients, particularly for patients with diabetic foot ulcer.
Keywords: Autonomic nervous system, diabetes mellitus, heart rate variability, pattern identification, sample entropy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19103102 Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control
Authors: Desmond B. Keenan, Paul Grossman
Abstract:
In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, spectral analysis, adaptive filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17553101 Poincaré Plot for Heart Rate Variability
Authors: Mazhar B. Tayel, Eslam I. AlSaba
Abstract:
Heart is the most important part in the body of living organisms. It affects and is affected by any factor in the body. Therefore, it is a good detector for all conditions in the body. Heart signal is a non-stationary signal; thus, it is utmost important to study the variability of heart signal. The Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and has become important dependent measure in psychophysiology and behavioral medicine. The standards of measurements, physiological interpretation and clinical use for HRV that are most often used were described in many researcher papers, however, remain complex issues are fraught with pitfalls. This paper presents one of the nonlinear techniques to analyze HRV. It discusses many points like, what Poincaré plot is and how Poincaré plot works; also, Poincaré plot's merits especially in HRV. Besides, it discusses the limitation of Poincaré cause of standard deviation SD1, SD2 and how to overcome this limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared toSD1 and SD2.
Keywords: Heart rate variability, chaotic system, Poincaré, variance, standard deviation, complex correlation measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74533100 Effect of Physical Contact (Hand-Holding) on Heart Rate Variability
Authors: T. Pishbin, S.M.P. Firoozabadi, N. Jafarnia Dabanloo, F. Mohammadi, S. Koozehgari
Abstract:
Heart-s electric field can be measured anywhere on the surface of the body (ECG). When individuals touch, one person-s ECG signal can be registered in other person-s EEG and elsewhere on his body. Now, the aim of this study was to test the hypothesis that physical contact (hand-holding) of two persons changes their heart rate variability. Subjects were sixteen healthy female (age: 20- 26) which divided into eight sets. In each sets, we had two friends that they passed intimacy test of J.sternberg. ECG of two subjects (each set) acquired for 5 minutes before hand-holding (as control group) and 5 minutes during they held their hands (as experimental group). Then heart rate variability signals were extracted from subjects' ECG and analyzed in linear feature space (time and frequency domain) and nonlinear feature space. Considering the results, we conclude that physical contact (hand-holding of two friends) increases parasympathetic activity, as indicate by increase SD1, SD1/SD2, HF and MF power (p<0.05) and decreases sympathetic activity, as indicate by decrease LF power (p<0.01) and LF/HF ratio (p<0.05).Keywords: Autonomic nervous system (ANS), Hand- holding, Heart rate variability (HRV), Power spectral density analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31043099 Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal
Authors: Khaldon Lweesy, Luay Fraiwan, Christoph Maier, Hartmut Dickhaus
Abstract:
This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier-s) theorem. The fundamental frequency of the mother-s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal-s electrocardiogram signal (fo-f) is higher than that of the mother-s (fo-f > fo-m). Notch filters to suppress mother-s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages.
Keywords: Aabdominal ECG, fetal heart rate variability, frequency harmonics, fundamental frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26733098 Differentiation of Heart Rate Time Series from Electroencephalogram and Noise
Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, Paul Joseph K.
Abstract:
Analysis of heart rate variability (HRV) has become a popular non-invasive tool for assessing the activities of autonomic nervous system. Most of the methods were hired from techniques used for time series analysis. Currently used methods are time domain, frequency domain, geometrical and fractal methods. A new technique, which searches for pattern repeatability in a time series, is proposed for quantifying heart rate (HR) time series. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are able to distinguish HR data clearly from noise and electroencephalogram (EEG). The results of analysis using these measures give an insight into the fundamental difference between the composition of HR time series with respect to EEG and noise.Keywords: Approximate entropy, heart rate variability, noise, pattern repeatability, and sample entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17343097 Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV
Authors: Manjit Singh
Abstract:
Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale.Keywords: ECG, heart rate variability, HRV, multiscale entropy, sampling frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13533096 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms
Authors: Desmond B. Keenan
Abstract:
The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20703095 Effects of Combined Stimulation on the Autonomic Nervous System: A Pilot Study
Authors: Dae Won Lee, Ji Hyung Park, Sinae Eom, Syung Hyun Cho, Jong Soo Lee, Han Sung Kim
Abstract:
The autonomic nervous system has a regulatory structure that helps people adapt to changes in their environment by adjusting or modifying some functions in response to stress, and regulating involuntary function of human organs. The purpose of this study was to investigate the effect of combined stimulation, both far-infrared heating and chiropractic, on the autonomic nervous system activities using thermal image and heart rate variability. Six healthy subjects participated in this test. We compared the before and after autonomic nervous system activities through obtaining thermal image and photoplethysmogram signal. The thermal images showed that the combined stimulation changed subject-s body temperature more highly and widely than before. The result of heart rate variability indicated that LF/HF ratio decreased. We concluded that combined stimulation activates autonomic nervous system, and expected other possibilities of this combined stimulation.Keywords: Far-infrared heating, Chiropractic, Autonomic nervous system, Heart rate variability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24673094 Heart Rate Variability in Responders and Non- Responders to Live-Moderate, Train-Low Altitude Training
Authors: Michael J. Hamlin, Apiwan Manimmanakorn, Gavin R. Sandercock, Jenny J. Ross, Robert H. Creasy, John Hellemans
Abstract:
The aim of this study was to compare the effects of an altitude training camp on heart rate variability and performance in elite triathletes. Ten athletes completed 20 days of live-high, train-low training at 1650m. Athletes underwent pre and post 800-m swim time trials at sea-level, and two heart rate variability tests at 1650m on the first and last day of the training camp. Based on their time trial results, athletes were divided into responders and non-responders. Relative to the non-responders, the responders sympathetic-toparasympathetic ratio decreased substantially after 20 days of altitude training (-0.68 ± 1.08 and -1.2 ± 0.96, mean ± 90% confidence interval for supine and standing respectively). In addition, sympathetic activity while standing was also substantially lower post-altitude in the responders compared to the non-responders (-1869 ± 4764 ms2). Results indicate that responders demonstrated a change to more vagal predominance compared to non-responders.Keywords: parasympathetic predominance, poor performance, triathlon, 800-m swim
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17963093 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus
Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K
Abstract:
Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31133092 Development of Sleep Quality Index Using Heart Rate
Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang
Abstract:
Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.Keywords: Sleep, sleep quality, heart rate, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15043091 A New Method in Short-Term Heart Rate Variability — Five-Class Density Histogram
Authors: Liping Li, Ke Li, Changchun Liu, Chengyu Liu, Yuanyang Li
Abstract:
A five-class density histogram with an index named cumulative density was proposed to analyze the short-term HRV. 150 subjects participated in the test, falling into three groups with equal numbers -- the healthy young group (Young), the healthy old group (Old), and the group of patients with congestive heart failure (CHF). Results of multiple comparisons showed a significant differences of the cumulative density in the three groups, with values 0.0238 for Young, 0.0406 for Old and 0.0732 for CHF (p<0.001). After 7 days and 14 days, 46 subjects from the Young and Old groups were retested twice following the same test protocol. Results showed good-to-excellent interclass correlations (ICC=0.783, 95% confidence interval 0.676-0.864). The Bland-Altman plots were used to reexamine the test-retest reliability. In conclusion, the method proposed could be a valid and reliable method to the short-term HRV assessment.
Keywords: Autonomic nervous system, congestive heart failure, heart rate variability, histogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20103090 Synchronization of 0.1 Hz Oscillations in Heart Rate and Blood Pressure: Application to Treatment of Myocardial Infarction Patients
Authors: M. D. Prokhorov, A. R. Kiselev, A. S. Karavaev, O. M. Posnenkova, V. I. Gridnev, V. I. Ponomarenko
Abstract:
Synchronization between 0.1 Hz oscillations in heart rate and blood pressure is studied and its change during vertical tilt is evaluated in 37 myocardial infarction patients. Two groups of patients are identified with decreased and increased, respectively, synchronization of the studied oscillations as a response to a tilt test. It is shown that assessment of synchronization of 0.1 Hz oscillations as a response to vertical tilt can be used as a guideline for selecting optimal dose of beta-blocker treatment in post-myocardial infarction patients.
Keywords: Cardiovascular system, heart rate variability, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16853089 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963088 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18123087 Nonlinear Dynamical Characterization of Heart Rate Variability Time Series of Meditation
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
Many recent electrophysiological studies have revealed the importance of investigating meditation state in order to achieve an increased understanding of autonomous control of cardiovascular functions. In this paper, we characterize heart rate variability (HRV) time series acquired during meditation using nonlinear dynamical parameters. We have computed minimum embedding dimension (MED), correlation dimension (CD), largest Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV time series of eight Chi and four Kundalini meditation practitioners. The pre-meditation state has been used as a baseline (control) state to compare the estimated parameters. The chaotic nature of HRV during both pre-meditation and meditation is confirmed by MED. The meditation state showed a significant decrease in the value of CD and increase in the value of LLE of HRV, in comparison with premeditation state, indicating a less complex and less predictable nature of HRV. In addition, it was shown that the HRV of meditation state is having highest NLS than pre-meditation state. The study indicated highly nonlinear dynamic nature of cardiac states as revealed by HRV during meditation state, rather considering it as a quiescent state.Keywords: Correlation dimension, Embedding dimension, Heartrate variability, Largest Lyapunov exponent, Meditation, Nonlinearity score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19063086 Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV
Authors: Soo- Young Ye, Dong-Hyun Kim
Abstract:
Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.Keywords: Obstructive sleep apnea, Heart rate variability, Air cylinder, PSD, RR interval, ANS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16913085 Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability
Authors: Liping Li, Changchun Liu, Ke Li, Chengyu Liu
Abstract:
Non-stationary trend in R-R interval series is considered as a main factor that could highly influence the evaluation of spectral analysis. It is suggested to remove trends in order to obtain reliable results. In this study, three detrending methods, the smoothness prior approach, the wavelet and the empirical mode decomposition, were compared on artificial R-R interval series with four types of simulated trends. The Lomb-Scargle periodogram was used for spectral analysis of R-R interval series. Results indicated that the wavelet method showed a better overall performance than the other two methods, and more time-saving, too. Therefore it was selected for spectral analysis of real R-R interval series of thirty-seven healthy subjects. Significant decreases (19.94±5.87% in the low frequency band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the wavelet method is recommended as an optimal choice for use.Keywords: empirical mode decomposition, heart rate variability, signal detrending, smoothness priors, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20703084 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier
Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat
Abstract:
Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.Keywords: Arrhythmic beat detection, ECG, HRV, kNN classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20613083 Gender Based Variability Time Series Complexity Analysis
Authors: Ramesh K. Sunkaria, Puneeta Marwaha
Abstract:
Non linear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy normal sinus rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.
Keywords: Heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17673082 Development of Soft-Core System for Heart Rate and Oxygen Saturation
Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik
Abstract:
This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.
Keywords: Heart rate, NIOS II, Oxygen Saturation, photoplethysmography, soft-core, SOPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13933081 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus
Authors: Muhibul H. Bhuyan, Mafujul Hasan
Abstract:
If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.
Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17993080 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16633079 Detecting Older Drivers- Stress Level during Real-World Driving Tasks
Authors: Weihong Guo, Dan Brennan, Phil Blythe
Abstract:
This paper presents the effect of driving a motor vehicle on the stress levels of older drivers, indicated by monitoring their hear rate increase whilst completing various everyday driving tasks. Results suggest that whilst older female drivers heart rate varied more significantly than males, the actual age of a participant did not result in a significant change in heart rate due to stress, within the age group tested. The analysis of the results indicates the most stressful manoeuvres undertaken by the older drivers and highlights the tasks which were found difficult with a view to implementing technologies to aid the more senior driver in automotive travel.Keywords: Driver stress, heart rate, older driver, road safety, speeding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22033078 The Intensity of Load Experienced by Female Basketball Players during Competitive Games
Authors: Tomáš Vencúrik, Jiří Nykodým
Abstract:
This study compares the intensity of game load among player positions and between the 1st and the 2nd half of the games. Two guards, three forwards, and three centers (female basketball players) participated in this study. The heart rate (HR) and its development were monitored during two competitive games. Statistically insignificant differences in the intensity of game load were recorded between guards, forwards, and centers below and above 85% of the maximal heart rate (HRmax) and in the mean HR as % of HRmax (87.81±3.79%, 87.02±4.37%, and 88.76±3.54%, respectively). Moreover, when the 1st and the 2nd half of the games were compared in the mean HR (87.89±4.18% vs. 88.14±3.63% of HRmax), no statistical significance was recorded. This information can be useful for coaching staff, to manage and to precisely plan the training process.Keywords: Game load, heart rate, player positions, the 1st and the 2nd half of the games.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23443077 Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram
Authors: Nur Ilyani Ramli, Mansour Youseffi, Peter Widdop
Abstract:
This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.
Keywords: Reflectance mode PPG, Heart beat detection, Circuitdesign, PCB design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45623076 Heart Rate-Determined Physical Activity In New Zealand School Children: A Cross- Sectional Study
Authors: Michael J. Hamlin, Mick Grimley, Vicki Cowley, Chris D. Price, Jill M. Hargreaves, Jenny J. Ross
Abstract:
The aim of this study was to examine current levels of physical activity determined via heart rate monitoring. A total of 176 children (85 boys, 91 girls) aged 5-13 years wore sealed Polar heart rate monitors for at least 10 hours per day on at least 3 days. Mean daily minutes of moderate to vigorous-intensity physical activity was 65 ± 43 (mean ± SD) for boys and 54 ± 37 for girls. Daily minutes of vigorous-intensity activity was 31 ± 24 and 24 ± 21 for boys and girls respectively. Significant differences in physical activity levels were observed between school day and weekends, boys and girls, and among age and geographical groups. Only 36% of boys and 22% of girls met the New Zealand physical activity guideline. This research indicates that a large proportion of New Zealand children are not meeting physical activity recommendations.
Keywords: activity guidelines, moderate activity, sedentary, vigorous activity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14003075 Synchronization between the Slow Oscillations in the Human Cardiovascular System
Authors: M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, A. R. Kiselev, V. I. Gridnev
Abstract:
Synchronization between the slow oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz is investigated. A method is proposed for quantitative estimation of synchronization between these oscillating processes based on calculation of relative time of phase synchronization of oscillations. It is shown that healthy subjects exhibit in average substantially longer epochs of synchronization between the slow oscillations in heart rate and blood pressure than patients after acute myocardial infarctionKeywords: Cardiovascular system, slow oscillating processes, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15493074 Modeling the Human Cardiovascular System with Aspecial Focus on the Heart Using Dymola
Authors: Stefanie Heinke, Carina Pereira, Jan Spillner, Steffen Leonhardt
Abstract:
Severe heart failure is a common problem that has a significant effect on health expenditures in industrialized countries; moreover it reduces patient-s quality of life. However, current research usually focuses either on detailed modeling of the heart or on detailed modeling of the cardiovascular system. Thus, this paper aims to present a sophisticated model of the heart enhanced with an extensive model of the cardiovascular system. Special interest is on the pressure and flow values close to the heart since these values are critical to accurately diagnose causes of heart failure. The model is implemented in Dymola an object-oriented, physical modeling language. Results achieved with the novel model show overall feasibility of the approach. Moreover, results are illustrated and compared to other models. The novel model shows significant improvements.
Keywords: Cardiovascular system, heart, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844