Search results for: enclosure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 51

Search results for: enclosure

51 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions

Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz

Abstract:

In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.

Keywords: Enclosure, natural convection, numerical solution, Nusselt number, triangular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
50 Conjugate Heat Transfer in an Enclosure Containing a Polygon Object

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Conjugate natural convection in a differentially heated square enclosure containing a polygon shaped object is studied numerically in this article. The effect of various polygon types on the fluid flow and thermal performance of the enclosure is addressed for different thermal conductivities. The governing equations are modeled and solved numerically using the built-in finite element method of COMSOL software. It is found that the heat transfer rate remains stable by varying the polygon types.

Keywords: Natural convection, Polygon object, COMSOL

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
49 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, Aluminum Clad PCB, IP 65 enclosure, motor inverter, thermal simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
48 Natural Convection of Water-Based CuO Nanofluids in a Cylindrical Enclosure

Authors: Baha Tulu Tanju, Kamil Kahveci

Abstract:

Buoyancy driven heat transfer of nanofluids in a cylindrical enclosure used as a control unit in the subsea hydrocarbon injection wells is investigated in this study. The governing equations obtained with the Boussinesq approximation are solved using Comsol Multiphysics finite element analysis and simulation software. The base fluid is water and CuO is used as nanoparticles. Solution is obtained for nanoparticle solid volume fraction of 8% and for Rayleigh number in the range of 105-107. The results show that nanoparticle usage in the cylindrical electronic control unit has a significant effect on the flow and heat transfer.

Keywords: CuO, enclosure, nanofluid, natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
47 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
46 Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry

Authors: Jan Langebach, Peter Fischer, Christian Karcher

Abstract:

A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit.

Keywords: Enclosure, heat source, heat transfer, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
45 Simulation of Natural Convection in Concentric Annuli between an Outer Inclined Square Enclosure and an Inner Horizontal Cylinder

Authors: Sattar Al-Jabair, Laith J. Habeeb

Abstract:

In this work, the natural convection in a concentric annulus between a cold outer inclined square enclosure and heated inner circular cylinder is simulated for two-dimensional steady state. The Boussinesq approximation was applied to model the buoyancy-driven effect and the governing equations were solved using the time marching approach staggered by body fitted coordinates. The coordinate transformation from the physical domain to the computational domain is set up by an analytical expression. Numerical results for Rayleigh numbers 103 , 104 , 105 and 106, aspect ratios 1.5 , 3.0 and 4.5 for seven different inclination angles for the outer square enclosure 0o , -30o , -45o , -60o , -90o , -135o , -180o are presented as well. The computed flow and temperature fields were demonstrated in the form of streamlines, isotherms and Nusselt numbers variation. It is found that both the aspect ratio and the Rayleigh number are critical to the patterns of flow and thermal fields. At all Rayleigh numbers angle of inclination has nominal effect on heat transfer.

Keywords: natural convection, concentric annulus, square inclined enclosure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
44 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid

Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari

Abstract:

In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.

Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
43 Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls

Authors: Jiun-Wei Chen, Chih-Yang Wu, Ming-Feng Hou

Abstract:

A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.

Keywords: Radiative transfer, parallel-plate enclosure, coatings, varying refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
42 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: Vacuum, thermal, flat-plate solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
41 Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position

Authors: Han-wool Lee, Chin-suk Hong, Weui-bong Jung

Abstract:

In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.

Keywords: Active Noise Control, Feed-forward Control, Noise Attenuation, Position Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
40 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink in a Closed Enclosure

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

The present study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. T0 validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: Inverse method, FLUENT, Plate-fin heat sink, Heat transfer characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
39 A Contractor for the Symmetric Solution Set

Authors: Milan Hladik

Abstract:

The symmetric solution set Σ sym is the set of all solutions to the linear systems Ax = b, where A is symmetric and lies between some given bounds A and A, and b lies between b and b. We present a contractor for Σ sym, which is an iterative method that starts with some initial enclosure of Σ sym (by means of a cartesian product of intervals) and sequentially makes the enclosure tighter. Our contractor is based on polyhedral approximation and solving a series of linear programs. Even though it does not converge to the optimal bounds in general, it may significantly reduce the overestimation. The efficiency is discussed by a number of numerical experiments.

Keywords: Linear interval systems, solution set, interval matrix, symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
38 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: Air dispersion model, integration power system, SCADA systems, GIS system, environmental management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
37 Analysis of a Fluid Behavior in a Rectangular Enclosure under the Effect of Magnetic Field

Authors: Y.Bakhshan, H.Ashoori

Abstract:

In this research, a 2-D computational analysis of steady state free convection in a rectangular enclosure filled with an electrically conducting fluid under Effect of Magnetic Field has been performed. The governing equations (mass, momentum, and energy) are formulated and solved by a finite volume method (FVM) subjected to different boundary conditions. A parametric study has been conducted to consider the influence of Grashof number (Gr), Prantdl number (Pr) and the orientation of magnetic field on the flow and heat transfer characteristics. It is observed that Nusselt number (Nu) and heat flux will increase with increasing Grashof and Prandtl numbers and decreasing the slope of the orientation of magnetic field.

Keywords: Rectangular Cavity, magneto-hydrodynamic, free convection, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
36 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
35 Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
34 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: Nano-fluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
33 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.

Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
32 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
31 Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
30 Investigation of Electromagnetic Force in 3P5W Busbar System under Peak Short-Circuit Current

Authors: Farhana Mohamad Yusop, Syafrudin Masri, Dahaman Ishak, Mohamad Kamarol

Abstract:

Electromagnetic forces on three-phase five-wire (3P5W) busbar system is investigated under three-phase short-circuits current. The conductor busbar placed in compact galvanized steel enclosure is in the rectangular shape. Transient analysis from Opera-2D is carried out to develop the model of three-phase short-circuits current in the system. The result of the simulation is compared with the calculation result, which is obtained by applying the theories of Biot Savart’s law and Laplace equation. Under this analytical approach, the moment of peak short-circuit current is taken into account. The effect upon geometrical arrangement of the conductor and the present of the steel enclosure are considered by the theory of image. The result depict that the electromagnetic force due to the transient short-circuit from simulation is agreed with the calculation.

Keywords: Busbar, electromagnetic force, short-circuit current, transient analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3995
29 Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure

Authors: A. Karimipour, M. Afrand, M. Akbari, M.R. Safaei

Abstract:

Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.

Keywords: Mixed convection, inclined driven cavity, Richardson number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
28 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure

Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard

Abstract:

In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.

Keywords: Cavity, natural convection, Nusselt number, wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
27 Convective Heat Transfer Enhancement in an Enclosure with Fin Utilizing Nano Fluids

Authors: S. H. Anilkumar, Ghulam Jilani

Abstract:

The objective of the present work is to conduct investigations leading to a more complete explanation of single phase natural convective heat transfer in an enclosure with fin utilizing nano fluids. The nano fluid used, which is composed of Aluminum oxide nano particles in suspension of Ethylene glycol, is provided at various volume fractions. The study is carried out numerically for a range of Rayleigh numbers, fin heights and aspect ratio. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions are identified as symmetry of sections. One half of such a rectangular region is chosen as the computational domain taking into account the symmetry about the fin. Transport equations are modeled by a stream functionvorticity formulation and are solved numerically by finite-difference schemes. Comparisons with previously published works on the basis of special cases are done. Results are presented in the form of streamline, vector and isotherm plots as well as the variation of local Nusselt number along the fin under different conditions.

Keywords: Fin height, Nano fluid, natural convection, Rayleigh number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
26 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall

Authors: Laith Jaafer Habeeb

Abstract:

The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.

Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
25 Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Enclosure with Non-Uniform Heating on Both Side Walls

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=103 to 106, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between Ø = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. For γ=π/2 and Ra=105 the magnetic field augments the effect of nanoparticles. At Ha=0, the greatest effects of nanoparticles are obtained at γ = 0 and π/4 for Ra=104 and 105 respectively.

 

Keywords: Lattice Boltzmann Method, magnetic field, Natural convection, nanofluid, Sinusoidal temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
24 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: Entropy generation, mixed convection, conjugate heat transfer, numerical, nanofluid, wall waviness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
23 A New Verified Method for Solving Nonlinear Equations

Authors: Taher Lotfi , Parisa Bakhtiari , Katayoun Mahdiani , Mehdi Salimi

Abstract:

In this paper, verified extension of the Ostrowski method which calculates the enclosure solutions of a given nonlinear equation is introduced. Also, error analysis and convergence will be discussed. Some implemented examples with INTLAB are also included to illustrate the validity and applicability of the scheme.

Keywords: Iinterval analysis, nonlinear equations, Ostrowski method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
22 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175