Abstracts | Structural and Construction Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 539

World Academy of Science, Engineering and Technology

[Structural and Construction Engineering]

Online ISSN : 1307-6892

209 Comparing Productivity of the Foreign versus Local Construction Workers Based on Their Level of Technical Training and Cultural Characteristics: Case Study of Kish Island, Iran

Authors: Mansour Rezvani, Mohammad Mahdi Mortaheb

Abstract:

This study considers the employment of foreign workforce in Kish Free Trade and Industrial Zone and aims to investigate the productivity of foreign construction labours as compared to their local counterpart. Moreover, this study compares work skills and experience of foreign and local Iranian construction workers to optimize construction working conditions. The results and findings have been effectively applied to develop a training program to optimize and promote Iranian workforce productivity and effectiveness in construction industry in comparison with foreign workforce. It is hoped that the accumulated findings contribute to decrease demand for foreign workers and skills shortages in construction sectors. Therefore, job vacancies for local residents in Kish and other looking for job people in main lands will be increased. The method of collecting data has been conducted by distributing a questionnaire and interviewing most foreign construction workers, local Iranian construction works and the project managers of five mega projects in Kish Island including Mica mall, Basak, Persian, Damoon and Sarina mall. All data have been analyzed by SPSS and Excel software. A topic-related survey was conducted through a structured questionnaire including 54 employers, 20 contractors and 13 consultants. About 56 factors were identified. After implementing the context validity test, 52 factors were stated in 52 questions based on five major groups consist of: (1) economical, (2) social and cultural, (3) individual, (4) technical, (5) organizational, environmental and legal. Based on the quantified Relative Importance Index, the ten most important factors, ten less important factors, and three most important categories were identified. To date, there is not any comprehensive study that explores the important critical factors in mega construction projects on Kish Island to identify the major problems to decrease demand for foreign workers.

Keywords: cultural characteristics, foreign worker, local construction workers, productivity, technical training

Procedia PDF Downloads 131
208 Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre

Authors: A. J. Shah, Neeraj Kumar Sahu

Abstract:

Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing.

Keywords: high strength concrete, the flexural strength of RPC, compressive strength of RPC, durability

Procedia PDF Downloads 182
207 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 118
206 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 142
205 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 148
204 Building Atmospheric Moisture Diagnostics: Environmental Monitoring and Data Collection

Authors: Paula Lopez-Arce, Hector Altamirano, Dimitrios Rovas, James Berry, Bryan Hindle, Steven Hodgson

Abstract:

Efficient mould remediation and accurate moisture diagnostics leading to condensation and mould growth in dwellings are largely untapped. Number of factors are contributing to the rising trend of excessive moisture in homes mainly linked with modern living, increased levels of occupation and rising fuel costs, as well as making homes more energy efficient. Environmental monitoring by means of data collection though loggers sensors and survey forms has been performed in a range of buildings from different UK regions. Air and surface temperature and relative humidity values of residential areas affected by condensation and/or mould issues were recorded. Additional measurements were taken through different trials changing type, location, and position of loggers. In some instances, IR thermal images and ventilation rates have also been acquired. Results have been interpreted together with environmental key parameters by processing and connecting data from loggers and survey questionnaires, both in buildings with and without moisture issues. Monitoring exercises carried out during Winter and Spring time show the importance of developing and following accurate protocols for guidance to obtain consistent, repeatable and comparable results and to improve the performance of environmental monitoring. A model and a protocol are being developed to build a diagnostic tool with the goal of performing a simple but precise residential atmospheric moisture diagnostics to distinguish the cause entailing condensation and mould generation, i.e., ventilation, insulation or heating systems issue. This research shows the relevance of monitoring and processing environmental data to assign moisture risk levels and determine the origin of condensation or mould when dealing with a building atmospheric moisture excess.

Keywords: environmental monitoring, atmospheric moisture, protocols, mould

Procedia PDF Downloads 125
203 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 304
202 An Exploratory Study on Challenges of Public Private Partnership Projects in Oman

Authors: Omar Amoudi, Mariya Khalid

Abstract:

The limitation of the public funds for the infrastructure projects and with the deterioration of international oil prices and the negative consequences on the economies of oil producing and exporting countries, Oman has encouraged the partnership between the public and private sectors. As the private sector has a role in planning, financing, designing, operating and the maintenance of the public services. There is no doubt that, the adoption of Public Private Partnership (PPP) strategy faces many challenges which might affect the project seriously if it is not overcome in earlier time. These challenges depend on the level of understanding of the strategy, the roles and regulations and the availability of resources as well. This research aims at identifying the challenges facing the PPP infrastructure projects in Oman based on the similar previous studies supported by questionnaire survey and semi structured interviews. It also seeks to discuss the rationale for adoption in Oman and uncover the current status of PPP strategy. The identified challenges were ranked according to the importance index of each challenge. After analysis of data, it has observed that, the main challenges facing PPPs projects in Oman are high participation cost, high projects cost and regulation changes. The PPP strategy has to be adopted well and with a high level of experience in order to ensure a successful implementation of PPP projects in Oman.

Keywords: public private partnership (PPP), challenges, infrastructure, Oman

Procedia PDF Downloads 280
201 Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder

Authors: Mohammed Abed, Rita Nemes

Abstract:

In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount.

Keywords: cellular concrete powder, waste cellular concrete powder (WCCP), supplementary cementatious material, SCM, activity index, mechanical properties

Procedia PDF Downloads 200
200 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 208
199 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: empirical models, rubberwood, moisture ratio, hot air drying

Procedia PDF Downloads 252
198 Comparison of the Existing Damage Indices in Steel Moment-Resisting Frame Structures

Authors: Hamid Kazemi, Abbasali Sadeghi

Abstract:

Assessment of seismic behavior of frame structures is just done for evaluating life and financial damages or lost. The new structural seismic behavior assessment methods have been proposed, so it is necessary to define a formulation as a damage index, which the damage amount has been quantified and qualified. In this paper, four new steel moment-resisting frames with intermediate ductility and different height (2, 5, 8, and 12-story) with regular geometry and simple rectangular plan were supposed and designed. The three existing groups’ damage indices were studied, each group consisting of local index (Drift, Maximum Roof Displacement, Banon Failure, Kinematic, Banon Normalized Cumulative Rotation, Cumulative Plastic Rotation and Ductility), global index (Roufaiel and Meyer, Papadopoulos, Sozen, Rosenblueth, Ductility and Base Shear), and story (Banon Failure and Inter-story Rotation). The necessary parameters for these damage indices have been calculated under the effect of far-fault ground motion records by Non-linear Dynamic Time History Analysis. Finally, prioritization of damage indices is defined based on more conservative values in terms of more damageability rate. The results show that the selected damage index has an important effect on estimation of the damage state. Also, failure, drift, and Rosenblueth damage indices are more conservative indices respectively for local, story and global damage indices.

Keywords: damage index, far-fault ground motion records, non-linear time history analysis, SeismoStruct software, steel moment-resisting frame

Procedia PDF Downloads 280
197 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 132
196 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 136
195 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates

Authors: Dhiraj Biswas, Chaitali Ray

Abstract:

A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.

Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect

Procedia PDF Downloads 208
194 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 211
193 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges

Authors: Dongming Feng, Fangyin Zhang, Liling Cao

Abstract:

Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.

Keywords: buckling, curved composite box girder, stage construction, structural detailing

Procedia PDF Downloads 109
192 Behavior of Square Reinforced-Concrete Columns Strengthened with Carbon Fiber Reinforced Polymers under Eccentric Loading

Authors: Dana J. Abed, Mu'tasim S. Abdel-Jaber, Nasim K. Shatarat

Abstract:

In this paper, an experimental study on twelve square columns was conducted to investigate the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymers (CFRP) wrapped square reinforced concrete (RC) short columns subjected to eccentric loadings. The columns were divided into three groups with three cross sections (200×200×1200, 250×250×1500 and 300×300×1800 mm). Each group was tested under two different eccentricities: 10% and 20% of the width of samples measured from the center of the column cross section. Four columns were developed in each arrangement. Two columns in each category were left unwrapped as control samples, and two were wrapped with one layer CFRP perpendicular to the specimen surface. In general; CFRP sheets has enhanced the performance of the strengthened columns compared to the control columns. It was noticed that the percentage of compressive capacity enhancement was decreased by increasing the cross-sectional size, and increasing loading eccentricity generally leads to reduced load bearing capacity in columns. In the same group specimens, when the eccentricity increased the percentage of enhancement in load carrying capacity was increased. The study concludes that the optimum use of the CFRP sheets for axial strength enhancement is for smaller cross-section columns under higher eccentricities.

Keywords: CFRP, columns, eccentric loading, cross-sectional

Procedia PDF Downloads 159
191 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 295
190 Fault Study and Reliability Analysis of Rotative Machine

Authors: Guang Yang, Zhiwei Bai, Bo Sun

Abstract:

This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications.

Keywords: rotative machine, reliability test, fault tree analysis, FMECA

Procedia PDF Downloads 141
189 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework

Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise

Abstract:

The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.

Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D

Procedia PDF Downloads 158
188 The Successful in Construction Project via Effectiveness of Project Team

Authors: Zarabizan Zakaria, Hayati Zainal

Abstract:

The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.

Keywords: project team, leadership, construction project, project successful

Procedia PDF Downloads 157
187 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 242
186 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.

Keywords: shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach

Procedia PDF Downloads 277
185 Numerical Analysis of the Flexural Behaviour of Concrete-Filled Rectangular Flange Girders

Authors: R. Al-Dujele, K. A. Cashell

Abstract:

A tubular flange girder is an I-shaped steel girder with either one of both of the usual flat flange plates replaced with a hollow section. Typically, these hollow sections are either rectangular or circular in shape. Concrete filled tubular flange girders (CFTFGs) are unconventional I-shaped beams that use a hollow structural section as the top flange which is filled with concrete. The resulting section offers very high lateral torsional buckling strength and stiffness compared with conventional steel I-beams of similar depth, width and weight, typically leading to a reduction in lateral bracing requirements. This paper is focussed on investigating the ultimate capacity of concrete filled rectangular tubular flange girders (CFRTFGs). These are complex members and their behaviour is governed by a number of inter-related parameters. The FE model is developed using ABAQUS software, 3-D finite element (FE) model for simply supported CFRTFGs subjected to two point loads applied at the third-span points is built. An initial geometrical imperfection of (L/1000), as well as geometrical and material nonlinearities, are introduced into the model, where L denotes the span of the girder. In this numerical model, the concrete and steel materials are modelled using eight-node solid and four-node shell elements, respectively. In addition to the FE model, simplified analytical expressions for the flexural capacity are also proposed, and the results are compared to those from the FE analyses. The analytical expressions, which are suitable for design, are also shown to be capable of providing an accurate depiction of the bending moment capacity.

Keywords: concrete-filled rectangular tubular flange girders, ultimate capacity, confining effect, finite element analysis

Procedia PDF Downloads 132
184 Identifying Reforms Required in Construction Contracts from Resolved Disputed Cases

Authors: K. C. Iyer, Yogita Manan Bindal, Sumit Kumar Bakshi

Abstract:

The construction industry is plagued with disputes and litigation in India with many stalled projects seeking dispute resolution. This has an adverse effect on the performance and overall project delivery and impacts future investments within the industry. While construction industry is the major driver of growth, there has not been major reforms in the government construction contracts. The study is aimed at identifying the proactive means of dispute avoidance, focusing on reforms required within the construction contracts, by studying 49 arbitration awards of construction disputes. The claims presented in the awards are aggregated to study the causes linked to the contract document and are referred against the prospective recommendation and practices as surveyed from literature review of research papers. Within contract administration, record keeping has been a major concern as they are required by the parties to substantiate the claims or the counterclaims and therefore are essential in any dispute redressal process. The study also observes that the right judgment is inhibited when the record keeping is improper and due to lack of coherence between documents, the dispute resolution period is also prolonged. The finding of the research will be relevant to industry practitioners in contract drafting with a view to avoid disputes.

Keywords: construction contract, contract administration, contract management, dispute avoidance

Procedia PDF Downloads 252
183 Analysing Implementation of Best Practices in Construction Contracts for Dispute Avoidance

Authors: K. C. Iyer, Yogita Manan Bindal, Sumit Kumar Bakshi

Abstract:

Disputes and litigation are becoming inherent to the construction industry in India, and despite construction being one of the major drivers of growth, there have not been many reforms in the government construction contracts. Many of the disputes arising from the government contracts, can be avoided by the proper drafting of contracts and their administration. This study aims to 1) identify the best practices in the construction contract as reviewed from the research papers and additional literature on contract management, 2) obtain perspectives from the industry experts on the implementation of these best practices with regards to likely challenges and relative benefits for implementing the best practices in construction contracts. The best practices for disputes arising due to delay events have been identified through extensive literature survey. The industry perspective is gathered by way of a questionnaire survey to understand the applicability of the identified best practices, the benefits that are likely to be obtained and the challenges that are likely to be faced in the implementation of these practices. The study concludes with the recommended best practices that can be implemented based on the perspectives obtained from the survey. The findings of the study can be used by the industry professionals while drafting construction contracts with a view to avoid disputes related to delay events.

Keywords: best practices, construction contract, delay, dispute avoidance

Procedia PDF Downloads 175
182 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity

Authors: Shivdayal Patel, Suhail Ahmad

Abstract:

Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.

Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling

Procedia PDF Downloads 262
181 Productivity of Construction Companies Using the Management of Threats and Opportunities ‎in Construction Projects of Iran

Authors: Nima Amani, Ali Salehi Dastjerdi, Fatemeh Ahmadi, Ardalan Sabamehr

Abstract:

The cost overrun of the construction projects has always been one of the main problems of the construction companies caused by the risky nature of the construction projects. Therefore, today, the application of risk management is inevitable. Although in theory, the issue of risk management is divided into the opportunities and threats management, in practice, most of the projects have been focused on the threats management. However, considering the opportunities management and applying the opportunities-response strategies can lead to the improved profitability of the construction projects of the companies. In this paper, a new technique is developed to identify the opportunities in the construction projects using an improved protocol and propose the appropriate opportunities-response strategies to the construction companies to provide them with higher profitability. To evaluate the effectiveness of the protocol for selecting the most appropriate strategies in ‎response to the opportunities and threats, two projects from a construction company in Iran were ‎studied. Both projects selected were in mid-range in terms of size and similar in terms of time, ‎run time and costs. Finally, the output indicates that using the proposed opportunities-response strategies show that the company's profitability in the future can be increased approximately for similar projects.

Keywords: opportunities management, risk-response strategy, opportunity-response strategy, productivity, risk management

Procedia PDF Downloads 212
180 A Study on the Safety Evaluation of Pier According to the Water Level Change by the Monte-Carlo Method

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Donghoon Shin, Kiyoung Kim

Abstract:

Recently, global warming phenomenon has led to natural disasters caused by global environmental changes, and due to abnormal weather events, the frequency and intensity of heavy rain storm typhoons are increasing. Therefore, it is imperative to prepare for future heavy rain storms and typhoons. This study selects arbitrary target bridges and performs numerical analysis to evaluate the safety of bridge piers in the event that the water level changes. The numerical model is based on two-dimensional surface elements. Actual reinforced concrete was simulated by modeling concrete to include reinforcements, and a contact boundary model was applied between the ground and the concrete. The water level applied to the piers was considered at 18 levels between 7.5 m and 16.1 m. The elastic modulus, compressive strength, tensile strength, and yield strength of the reinforced concrete were calculated using 250 random combinations and numerical analysis was carried out for each water level. In the results of analysis, the bridge exceeded the stated limit at 15.0 m. At the maximum water level of 16.1m, the concrete’s failure rate was 35.2%, but the probability that the reinforcement would fail was 61.2%.

Keywords: Monte-Carlo method, pier, water level change, limit state

Procedia PDF Downloads 272