Search results for: wheel slip tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1259

Search results for: wheel slip tracking

209 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 189
208 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 129
207 Identifying the Faces of colonialism: An Analysis of Gender Inequalities in Economic Participation in Pakistan through Postcolonial Feminist Lens

Authors: Umbreen Salim, Anila Noor

Abstract:

This paper analyses the influences and faces of colonialism in women’s participation in economic activity in postcolonial Pakistan, through postcolonial feminist economic lens. It is an attempt to probe the shifts in gender inequalities that have existed in three stages; pre-colonial, colonial, and postcolonial times in the Indo-Pak subcontinent. It delves into an inquiry of pre-colonial as it is imperative to understand the situation and context before colonisation in order to assess the deviations associated with its onset. Hence, in order to trace gender inequalities this paper analyses from Mughal Era (1526-1757) that existed before British colonisation, then, the gender inequalities that existed during British colonisation (1857- 1947) and the associated dynamics and changes in women’s vulnerabilities to participate in the economy are examined. Followed by, the postcolonial (1947 onwards) scenario of discriminations and oppressions faced by women. As part of the research methodology, primary and secondary data analysis was done. Analysis of secondary data including literary works and photographs was carried out, followed by primary data collection using ethnographic approaches and participatory tools to understand the presence of coloniality and gender inequalities embedded in the social structure through participant’s real-life stories. The data is analysed using feminist postcolonial analysis. Intersectionality has been a key tool of analysis as the paper delved into the gender inequalities through the class and caste lens briefly touching at religion. It is imperative to mention the significance of the study and very importantly the practical challenges as historical analysis of 18th and 19th century is involved. Most of the available work on history is produced by a) men and b) foreigners and mostly white authors. Since the historical analysis is mostly by men the gender analysis presented misses on many aspects of women’s issues and since the authors have been mostly white European gives it as Mohanty says, ‘under western eyes’ perspective. Whereas the edge of this paper is the authors’ deep attachment, belongingness as lived reality and work with women in Pakistan as postcolonial subjects, a better position to relate with the social reality and understand the phenomenon. The study brought some key results as gender inequalities existed before colonisation when women were hidden wheel of stable economy which was completely invisible. During the British colonisation, the vulnerabilities of women only increased and as compared to men their inferiority status further strengthened. Today, the postcolonial woman lives in deep-rooted effects of coloniality where she is divided in class and position within the class, and she has to face gender inequalities within household and in the market for economic participation. Gender inequalities have existed in pre-colonial, during colonisation and postcolonial times in Pakistan with varying dynamics, degrees and intensities for women whereby social class, caste and religion have been key factors defining the extent of discrimination and oppression. Colonialism may have physically ended but the coloniality remains and has its deep, broad and wide effects in increasing gender inequalities in women’s participation in the economy in Pakistan.

Keywords: colonialism, economic participation, gender inequalities, women

Procedia PDF Downloads 181
206 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil

Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira

Abstract:

In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.

Keywords: railway transport, energy efficiency, railway technology, fuel consumption

Procedia PDF Downloads 277
205 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 54
204 The Conceptualization of Patient-Centered Care in Latin America: A Scoping Review

Authors: Anne Klimesch, Alejandra Martinez, Martin HäRter, Isabelle Scholl, Paulina Bravo

Abstract:

Patient-centered care (PCC) is a key principle of high-quality healthcare. In Latin America, research on and promotion of PCC have taken place in the past. However, thorough implementation of PCC in practice is still missing. In Germany, an integrative model of patient-centeredness has been developed by synthesis of diverse concepts of PCC. The model could serve as a point of reference for further research on the implementation of PCC. However, it is predominantly based on research from Europe and North America. This scoping review, therefore, aims to accumulate research on PCC in Latin America in the past 15 years and analyse how PCC has been conceptualized. The resulting overview of PCC in Latin America will be a foundation for a subsequent study aiming at the adaptation of the integrative model of patient-centeredness to the Latin American health care context. Scientific databases (MEDLINE, EMBASE, PsycINFO, CINAHL, Scopus, Web of Science, SCIELO, Redalyc.) will be searched, and reference and citation tracking will be performed. Studies will be included if they were carried out in Latin America, investigated PCC in any clinical and community setting (public and private), and were published in English, Spanish, French, or Portuguese since 2006. Furthermore, any theoretical framework or conceptual model to guide how PCC is conceptualized in Latin America will be included. Two reviewers will be responsible for the identification of articles, screening of records, and full-text assessment. The results of the scoping review will be used in the development of a mixed-methods study with the aim to understand the needs for PCC, as well as barriers and facilitators in Latin America. Based on the outcomes, the integrative model of PCC will be translated to Spanish and adapted to the Latin American context. The integrative model will enable the dissemination of the concept of PCC in Latin America and will provide a common ground for further research on the topic. The project will thereby make an important contribution to an evidence-based implementation of PCC in Latin America.

Keywords: conceptual framework, integrative model of PCC, Latin America, patient-centered care

Procedia PDF Downloads 168
203 Induction Machine Design Method for Aerospace Starter/Generator Applications and Parametric FE Analysis

Authors: Wang Shuai, Su Rong, K. J.Tseng, V. Viswanathan, S. Ramakrishna

Abstract:

The More-Electric-Aircraft concept in aircraft industry levies an increasing demand on the embedded starter/generators (ESG). The high-speed and high-temperature environment within an engine poses great challenges to the operation of such machines. In view of such challenges, squirrel cage induction machines (SCIM) have shown advantages due to its simple rotor structure, absence of temperature-sensitive components as well as low torque ripples etc. The tight operation constraints arising from typical ESG applications together with the detailed operation principles of SCIMs have been exploited to derive the mathematical interpretation of the ESG-SCIM design process. The resultant non-linear mathematical treatment yielded unique solution to the SCIM design problem for each configuration of pole pair number p, slots/pole/phase q and conductors/slot zq, easily implemented via loop patterns. It was also found that not all configurations led to feasible solutions and corresponding observations have been elaborated. The developed mathematical procedures also proved an effective framework for optimization among electromagnetic, thermal and mechanical aspects by allocating corresponding degree-of-freedom variables. Detailed 3D FEM analysis has been conducted to validate the resultant machine performance against design specifications. To obtain higher power ratings, electrical machines often have to increase the slot areas for accommodating more windings. Since the available space for embedding such machines inside an engine is usually short in length, axial air gap arrangement appears more appealing compared to its radial gap counterpart. The aforementioned approach has been adopted in case studies of designing series of AFIMs and RFIMs respectively with increasing power ratings. Following observations have been obtained. Under the strict rotor diameter limitation AFIM extended axially for the increased slot areas while RFIM expanded radially with the same axial length. Beyond certain power ratings AFIM led to long cylinder geometry while RFIM topology resulted in the desired short disk shape. Besides the different dimension growth patterns, AFIMs and RFIMs also exhibited dissimilar performance degradations regarding power factor, torque ripples as well as rated slip along with increased power ratings. Parametric response curves were plotted to better illustrate the above influences from increased power ratings. The case studies may provide a basic guideline that could assist potential users in making decisions between AFIM and RFIM for relevant applications.

Keywords: axial flux induction machine, electrical starter/generator, finite element analysis, squirrel cage induction machine

Procedia PDF Downloads 434
202 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 158
201 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 114
200 Global Supply Chain Tuning: Role of National Culture

Authors: Aleksandr S. Demin, Anastasiia V. Ivanova

Abstract:

Purpose: The current economy tends to increase the influence of digital technologies and diminish the human role in management. However, it is impossible to deny that a person still leads a business with its own set of values and priorities. The article presented aims to incorporate the peculiarities of the national culture and the characteristics of the supply chain using the quantitative values of the national culture obtained by the scholars of comparative management (Hofstede, House, and others). Design/Methodology/Approach: The conducted research is based on the secondary data in the field of cross-country comparison achieved by Prof. Hofstede and received in the GLOBE project. The data mentioned are used to design different aspects of the supply chain both on the cross-functional and inter-organizational levels. The connection between a range of principles in general (roles assignment, customer service prioritization, coordination of supply chain partners) and in comparative management (acknowledgment of the national peculiarities of the country in which the company operates) is shown over economic and mathematical models, mainly linear programming models. Findings: The combination of the team management wheel concept, the business processes of the global supply chain, and the national culture characteristics let a transnational corporation to form a supply chain crew balanced in costs, functions, and personality. To elaborate on an effective customer service policy and logistics strategy in goods and services distribution in the country under review, two approaches are offered. The first approach relies exceptionally on the customer’s interest in the place of operation, while the second one takes into account the position of the transnational corporation and its previous experience in order to accord both organizational and national cultures. The effect of integration practice on the achievement of a specific supply chain goal in a specific location is advised to assess via types of correlation (positive, negative, non) and the value of national culture indices. Research Limitations: The models developed are intended to be used by transnational companies and business forms located in several nationally different areas. Some of the inputs to illustrate the application of the methods offered are simulated. That is why the numerical measurements should be used with caution. Practical Implications: The research can be of great interest for the supply chain managers who are responsible for the engineering of global supply chains in a transnational corporation and the further activities in doing business on the international area. As well, the methods, tools, and approaches suggested can be used by top managers searching for new ways of competitiveness and can be suitable for all staff members who are keen on the national culture traits topic. Originality/Value: The elaborated methods of decision-making with regard to the national environment suggest the mathematical and economic base to find a comprehensive solution.

Keywords: logistics integration, logistics services, multinational corporation, national culture, team management, service policy, supply chain management

Procedia PDF Downloads 83
199 Sacidava and Its Role of Military Outpost in the Moesian Sector of the Danube Limes: Animal Food Resources and Landscape Reconstruction

Authors: Margareta Simina Stanc, Aurel Mototolea, Tiberiu Potarniche

Abstract:

Sacidava archeological site is located in Dobrudja region, Romania, on a hill on the right bank of the Danube - the Musait point, located at about 5 km north-east from Dunareni village. The place-name documents the fact that, prior to the Roman conquest, in the area, there was a Getic settlement. The location of the Sacidava was made possible by corroborating the data provided by the ancient sources with the epigraphic documents (the milial pillar during the time of Emperor Decius). The tegular findings attest that an infantry unit, cohors I Cilicum milliaria equitata, as well as detachments from Legio V Macedonica and Legio XI Claudia, were confined to Sacidava. During the period of the Dominion, the garrison of the fortification is the host of a cavalry unit: cuneus equitum scutariorum. In the immediate vicinity to the Roman fortress, to the east, were identified two other fortifications: a Getic settlement (4th-1st century B.C.) and an Early Medieval settlement (9th-10th century A.C.). The archaeological material recovered during the research is represented by ceramic forms such as amphoras, jugs, pots, cups, plates, to which are added oil lamps, some of them typologically new at the time of discovery. Local ceramic shapes were also founded, worked by hand or by wheel, considered un-Romanized or in the course of Romanization. During the time of the Principality, Sacidava it represented an important military outpost serving mainly the city of Tropaeum Traiani, controlling also the supply and transport on the Danube limes in the Moesic sector. This role will determine the development of the fortress and the appearance of extramuros civil structures, thus becoming an important landmark during the 5th-6th centuries A.C., becoming a representation of power of the Roman empire in an area of continuous conflict. During recent archaeological researches, faunal remains were recovered, and their analysis allowed to estimate the animal resources and subsistence practices (animal husbandry, hunting, fishing) in the settlement. The methodology was specific to archaeozoology, mainly consisting of anatomical, taxonomical, and taphonomical identifications, recording, and quantification of the data. The remains of domestic mammals have the highest proportion indicating the importance of animal husbandry; the predominant species are Bos taurus, Ovis aries/Capra hircus, and Sus domesticus. Fishing and hunting were of secondary importance in the subsistence economy of the community. Wild boar and the red deer were the most frequently hunted species. Just a few fish bones were recovered. Thus, the ancient city of Sacidava is proving to be an important element of cultural heritage of the south-eastern part of Romania, for whose conservation and enhancement efforts must be made, especially by landscape reconstruction.

Keywords: archaeozoology, landscape reconstruction, limes, military outpost

Procedia PDF Downloads 288
198 Investigating Clarity Ultrasound Transperineal Ultrasound Imaging as a Method of Localising the Prostate, Compared to Cone Beam Computed Tomography with Fiducials

Authors: Harley Stephens

Abstract:

Although fiducial marker insertion is regarded as the ‘gold standard’ in terms of image guided radiotherapy (IGRT), its application must be considered carefully as the procedure can be invasive, time-consuming, and reliant on consultant expertise. Precision of the fiducials is dependent on these markers remaining in the same location and on the prostate not changing shape during the course treatment. To facilitate the acquirement of non-ionising IGRT and intra-fractional prostate tracking, Clarity TPUS was developed as an alternative imaging system. The main benefits of Clarity TPUS are that it is non-invasive, non-ionising and cost-effective. Other studies have compared fiducials to transabdominal ultrasound, which has since been proven to not be as accurate as trans-perineal imaging, as included in this study. CBCT fiducial translations and Clarity TPUS translations for 120 images as part of the PACE-C prostate SABR trial were retrospectively evaluated by three imaging specialists. Differences were analysed using correlation and Bland-Altman plots. Inter-observer matches agreed within 3mm 88.3 % of the time in left/right direction, 86.7 % of the time in in superior/inferior direction, and 91.7% of the time in ant/post direction. They agreed within 5mm more than 98.3 % of the time in all directions. The intra-class correlation co-efficient was calculated for each direction to show agreement between imaging specialist for inter-observer variability. Each was 0.95 or above, with 1 indicating perfect reliability. Agreement between observers was slightly higher for CBCT and fiducials at 98.7% agreement within 5 mm, compared to clarity TPUS where 96.7% agreement was seen within 5mm. Clarity TPUS has the benefit of no additional dose and intra-fractional monitoring, and results show a good correlation between the different modalities. Inter-observer variability is to be considered, and further research with a larger population would be of benefit.

Keywords: oncology, prostate radiotherapy, image guided radiotherapy, IGRT

Procedia PDF Downloads 83
197 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications

Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham

Abstract:

The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.

Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault

Procedia PDF Downloads 13
196 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array

Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.

Keywords: acoustic sensing, direction of arrival, drone detection, microphone array

Procedia PDF Downloads 130
195 Study of University Course Scheduling for Crowd Gathering Risk Prevention and Control in the Context of Routine Epidemic Prevention

Authors: Yuzhen Hu, Sirui Wang

Abstract:

As a training base for intellectual talents, universities have a large number of students. Teaching is a primary activity in universities, and during the teaching process, a large number of people gather both inside and outside the teaching buildings, posing a strong risk of close contact. The class schedule is the fundamental basis for teaching activities in universities and plays a crucial role in the management of teaching order. Different class schedules can lead to varying degrees of indoor gatherings and trajectories of class attendees. In recent years, highly contagious diseases have frequently occurred worldwide, and how to reduce the risk of infection has always been a hot issue related to public safety. "Reducing gatherings" is one of the core measures in epidemic prevention and control, and it can be controlled through scientific scheduling in specific environments. Therefore, the scientific prevention and control goal can be achieved by considering the reduction of the risk of excessive gathering of people during the course schedule arrangement. Firstly, we address the issue of personnel gathering in various pathways on campus, with the goal of minimizing congestion and maximizing teaching effectiveness, establishing a nonlinear mathematical model. Next, we design an improved genetic algorithm, incorporating real-time evacuation operations based on tracking search and multidimensional positive gradient cross-mutation operations, considering the characteristics of outdoor crowd evacuation. Finally, we apply undergraduate course data from a university in Harbin to conduct a case study. It compares and analyzes the effects of algorithm improvement and optimization of gathering situations and explores the impact of path blocking on the degree of gathering of individuals on other pathways.

Keywords: the university timetabling problem, risk prevention, genetic algorithm, risk control

Procedia PDF Downloads 41
194 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till

Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum

Abstract:

Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.

Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia

Procedia PDF Downloads 124
193 Tracking the Effect of Ibutilide on Amplitude and Frequency of Fibrillatory Intracardiac Electrograms Using the Regression Analysis

Authors: H. Hajimolahoseini, J. Hashemi, D. Redfearn

Abstract:

Background: Catheter ablation is an effective therapy for symptomatic atrial fibrillation (AF). The intracardiac electrocardiogram (IEGM) collected during this procedure contains precious information that has not been explored to its full capacity. Novel processing techniques allow looking at these recordings from different perspectives which can lead to improved therapeutic approaches. In our previous study, we showed that variation in amplitude measured through Shannon Entropy could be used as an AF recurrence risk stratification factor in patients who received Ibutilide before the electrograms were recorded. The aim of this study is to further investigate the effect of Ibutilide on characteristics of the recorded signals from the left atrium (LA) of a patient with persistent AF before and after administration of the drug. Methods: The IEGMs collected from different intra-atrial sites of 12 patients were studied and compared before and after Ibutilide administration. First, the before and after Ibutilide IEGMs that were recorded within a Euclidian distance of 3 mm in LA were selected as pairs for comparison. For every selected pair of IEGMs, the Probability Distribution Function (PDF) of the amplitude in time domain and magnitude in frequency domain was estimated using the regression analysis. The PDF represents the relative likelihood of a variable falling within a specific range of values. Results: Our observations showed that in time domain, the PDF of amplitudes was fitted to a Gaussian distribution while in frequency domain, it was fitted to a Rayleigh distribution. Our observations also revealed that after Ibutilide administration, the IEGMs would have significantly narrower short-tailed PDFs both in time and frequency domains. Conclusion: This study shows that the PDFs of the IEGMs before and after administration of Ibutilide represents significantly different properties, both in time and frequency domains. Hence, by fitting the PDF of IEGMs in time domain to a Gaussian distribution or in frequency domain to a Rayleigh distribution, the effect of Ibutilide can easily be tracked using the statistics of their PDF (e.g., standard deviation) while this is difficult through the waveform of IEGMs itself.

Keywords: atrial fibrillation, catheter ablation, probability distribution function, time-frequency characteristics

Procedia PDF Downloads 142
192 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 123
191 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 183
190 Enhancing Health Information Management with Smart Rings

Authors: Bhavishya Ramchandani

Abstract:

A little electronic device that is worn on the finger is called a smart ring. It incorporates mobile technology and has features that make it simple to use the device. These gadgets, which resemble conventional rings and are usually made to fit on the finger, are outfitted with features including access management, gesture control, mobile payment processing, and activity tracking. A poor sleep pattern, an irregular schedule, and bad eating habits are all part of the problems with health that a lot of people today are facing. Diets lacking fruits, vegetables, legumes, nuts, and whole grains are common. Individuals in India also experience metabolic issues. In the medical field, smart rings will help patients with problems relating to stomach illnesses and the incapacity to consume meals that are tailored to their bodies' needs. The smart ring tracks all bodily functions, including blood sugar and glucose levels, and presents the information instantly. Based on this data, the ring generates what the body will find to be perfect insights and a workable site layout. In addition, we conducted focus groups and individual interviews as part of our core approach and discussed the difficulties they're having maintaining the right diet, as well as whether or not the smart ring will be beneficial to them. However, everyone was very enthusiastic about and supportive of the concept of using smart rings in healthcare, and they believed that these rings may assist them in maintaining their health and having a well-balanced diet plan. This response came from the primary data, and also working on the Emerging Technology Canvas Analysis of smart rings in healthcare has led to a significant improvement in our understanding of the technology's application in the medical field. It is believed that there will be a growing demand for smart health care as people become more conscious of their health. The majority of individuals will finally utilize this ring after three to four years when demand for it will have increased. Their daily lives will be significantly impacted by it.

Keywords: smart ring, healthcare, electronic wearable, emerging technology

Procedia PDF Downloads 33
189 Socio-Economic Insight of the Secondary Housing Market in Colombo Suburbs: Seller’s Point of Views

Authors: R. G. Ariyawansa, M. A. N. R. M. Perera

Abstract:

“House” is a powerful symbol of socio-economic background of individuals and families. In fact, housing provides all types of needs/wants from basic needs to self-actualization needs. This phenomenon can be realized only having analyzed hidden motives of buyers and sellers of the housing market. Hence, the aim of this study is to examine the socio-economic insight of the secondary housing market in Colombo suburbs. This broader aim was achieved via analyzing the general pattern of the secondary housing market, identifying socio-economic motives of sellers of the secondary housing market, and reviewing sellers’ experience of buyer behavior. A purposive sample of 50 sellers from popular residential areas in Colombo such as Maharagama, Kottawa, Piliyandala, Punnipitiya, and Nugegoda was used to collect primary data instead of relevant secondary data from published and unpublished reports. The sample was limited to selling price ranging from Rs15 million to Rs25 million, which apparently falls into middle and upper-middle income houses in the context. Participatory observation and semi-structured interviews were adopted as key data collection tools. Data were descriptively analyzed. This study found that the market is mainly handled by informal agents who are unqualified and unorganized. People such as taxi/tree-wheel drivers, boutique venders, security personals etc. are engaged in housing brokerage as a part time career. Few fulltime and formally organized agents were found but they were also not professionally qualified. As far as housing quality is concerned, it was observed that 90% of houses was poorly maintained and illegally modified. They are situated in poorly maintained neighborhoods as well. Among the observed houses, 2% was moderately maintained and 8% was well maintained and modified. Major socio-economic motives of sellers were “migrating foreign countries for education and employment” (80% and 10% respectively), “family problems” (4%), and “social status” (3%). Other motives were “health” and “environmental/neighborhood problems” (3%). This study further noted that the secondary middle income housing market in the area directly related with the migrants who motivated for education in foreign countries, mainly Australia, UK and USA. As per the literature, families motivated for education tend to migrate Colombo suburbs from remote areas of the country. They are seeking temporary accommodation in lower middle income housing. However, the secondary middle income housing market relates with the migration from Colombo to major global cities. Therefore, final transaction price of this market may depend on migration related dates such as university deadlines, visa and other agreements. Hence, it creates a buyers’ market lowering the selling price. Also it was revealed that the buyers tend to trust more on this market as far as the quality of construction of houses is concerned than brand new houses which are built for selling purpose.

Keywords: informal housing market, hidden motives of buyers and sellers, secondary housing market, socio-economic insight

Procedia PDF Downloads 148
188 Planning a Haemodialysis Process by Minimum Time Control of Hybrid Systems with Sliding Motion

Authors: Radoslaw Pytlak, Damian Suski

Abstract:

The aim of the paper is to provide a computational tool for planning a haemodialysis process. It is shown that optimization methods can be used to obtain the most effective treatment focused on removing both urea and phosphorus during the process. In order to achieve that, the IV–compartment model of phosphorus kinetics is applied. This kinetics model takes into account a rebound phenomenon that can occur during haemodialysis and results in a hybrid model of the process. Furthermore, vector fields associated with the model equations are such that it is very likely that using the most intuitive objective functions in the planning problem could lead to solutions which include sliding motions. Therefore, building computational tools for solving the problem of planning a haemodialysis process has required constructing numerical algorithms for solving optimal control problems with hybrid systems. The paper concentrates on minimum time control of hybrid systems since this control objective is the most suitable for the haemodialysis process considered in the paper. The presented approach to optimal control problems with hybrid systems is different from the others in several aspects. First of all, it is assumed that a hybrid system can exhibit sliding modes. Secondly, the system’s motion on the switching surface is described by index 2 differential–algebraic equations, and that guarantees accurate tracking of the sliding motion surface. Thirdly, the gradients of the problem’s functionals are evaluated with the help of adjoint equations. The adjoint equations presented in the paper take into account sliding motion and exhibit jump conditions at transition times. The optimality conditions in the form of the weak maximum principle for optimal control problems with hybrid systems exhibiting sliding modes and with piecewise constant controls are stated. The presented sensitivity analysis can be used to construct globally convergent algorithms for solving considered problems. The paper presents numerical results of solving the haemodialysis planning problem.

Keywords: haemodialysis planning process, hybrid systems, optimal control, sliding motion

Procedia PDF Downloads 169
187 Model of Application of Blockchain Technology in Public Finances

Authors: M. Vlahovic

Abstract:

This paper presents a model of public finances, which combines three concepts: participatory budgeting, crowdfunding and blockchain technology. Participatory budgeting is defined as a process in which community members decide how to spend a part of community’s budget. Crowdfunding is a practice of funding a project by collecting small monetary contributions from a large number of people via an Internet platform. Blockchain technology is a distributed ledger that enables efficient and reliable transactions that are secure and transparent. In this hypothetical model, the government or authorities on local/regional level would set up a platform where they would propose public projects to citizens. Citizens would browse through projects and support or vote for those which they consider justified and necessary. In return, they would be entitled to a tax relief in the amount of their monetary contribution. Since the blockchain technology enables tracking of transactions, it can be used to mitigate corruption, money laundering and lack of transparency in public finances. Models of its application have already been created for e-voting, health records or land registries. By presenting a model of application of blockchain technology in public finances, this paper takes into consideration the potential of blockchain technology to disrupt governments and make processes more democratic, secure, transparent and efficient. The framework for this paper consists of multiple streams of research, including key concepts of direct democracy, public finance (especially the voluntary theory of public finance), information and communication technology, especially blockchain technology and crowdfunding. The framework defines rules of the game, basic conditions for the implementation of the model, benefits, potential problems and development perspectives. As an oversimplified map of a new form of public finances, the proposed model identifies primary factors, that influence the possibility of implementation of the model, and that could be tracked, measured and controlled in case of experimentation with the model.

Keywords: blockchain technology, distributed ledger, participatory budgeting, crowdfunding, direct democracy, internet platform, e-government, public finance

Procedia PDF Downloads 127
186 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data

Authors: Jian-Heng Wu, Bor-Shen Lin

Abstract:

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.

Keywords: water mass, Gaussian mixture model, data visualization, system framework

Procedia PDF Downloads 109
185 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 95
184 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 122
183 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 28
182 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 48
181 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 106
180 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns

Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph

Abstract:

The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.

Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation

Procedia PDF Downloads 290