Search results for: virtual reality driving simulator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3308

Search results for: virtual reality driving simulator

3248 Virtual Reality Exposure Therapy for Post-Traumatic Stress Disorder: A Literature Review

Authors: Daniel Azizyan, Marina Vardanyan, Astghik Dallakyan

Abstract:

The objective of this literature review is to bring valuable and much-needed insight into Virtual Reality Exposure Therapy (VRET) for the treatment of Post-Traumatic Stress Disorder (PTSD) among military personnel. As the issues regarding war veterans who suffer from PTSD become more and more widespread, the task of finding possible solutions that would provide alternative approaches to existing methods being used today becomes more relevant than ever. By analyzing the previous applications of VRET, this literature review covers the state of the research done currently on the topic, reviews the known information while identifying the main problems, and aims to use missed opportunities and find potential solutions. It provides the answers to the most relevant questions concerning VRET and leads to important conclusions in the hope of making the technology more practical, widespread, and effective.

Keywords: military PTSD, post-traumatic stress disorder, prolonged exposure, virtual reality exposure therapy, VRE

Procedia PDF Downloads 77
3247 Personnel Training of Automotive Manufacturers in Virtual Reality

Authors: Mirza Ahsan Baig, Paul Evans

Abstract:

Due to the high demand for automobiles, manufacturers have to run their production lines non-stop for long periods. At such a scale, unplanned downtime could cost up to $50 billion annually. Improper training of new hires could lead to safety issues causing unplanned downtimes. The project developed a virtual reality simulation that could train personnel for key operations on an automobile manufacturing floor, reducing the risk of unplanned downtime while eliminating any disruption (due to training) on the assembly line. An automation firm sponsored it to explore the possibilities the likes of Jaguar and BMW are yet to achieve! The project was inspired by Bentley, the only company that succeeded in simulation training scenarios within virtual space. The project aims to inspire other significant firms to do the same. It was increasing employee safety, eliminating downtimes, and improving efficiency. The developed prototype uncovered various limitations within existing simulation providers and was able to simulate state-of-the-art training scenarios. It also explored the possibility of a multiuser interface and resolved complex issues such as lack of movement space within the training area.

Keywords: virtual reality, scenario training, limited movement, multiuser

Procedia PDF Downloads 53
3246 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 155
3245 Potentials for Learning History through Role-Playing in Virtual Reality: An Exploratory Study on Role-Playing on a Virtual Heritage Site

Authors: Danzhao Cheng, Eugene Ch'ng

Abstract:

Virtual Reality technologies can reconstruct cultural heritage objects and sites to a level of realism. Concentrating mostly on documenting authentic data and accurate representations of tangible contents, current virtual heritage is limited to accumulating visually presented objects. Such constructions, however, are fragmentary and may not convey the inherent significance of heritage in a meaningful way. In order to contextualise fragmentary historical contents where history can be told, a strategy is to create a guided narrative via role-playing. Such an approach can strengthen the logical connections of cultural elements and facilitate creative synthesis within the virtual world. This project successfully reconstructed the Ningbo Sanjiangkou VR site in Yuan Dynasty combining VR technology and role-play game approach. The results with 80 pairs of participants suggest that VR role-playing can be beneficial in a number of ways. Firstly, it creates thematic interactivity which encourages users to explore the virtual heritage in a more entertaining way with task-oriented goals. Secondly, the experience becomes highly engaging since users can interpret a historical context through the perspective of specific roles that exist in past societies. Thirdly, personalisation allows open-ended sequences of the expedition, reinforcing user’s acquisition of procedural knowledge relative to the cultural domain. To sum up, role-playing in VR poses great potential for experiential learning as it allows users to interpret a historical context in a more entertaining way.

Keywords: experiential learning, maritime silk road, role-playing, virtual heritage, virtual reality

Procedia PDF Downloads 131
3244 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving

Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard

Abstract:

Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.

Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time

Procedia PDF Downloads 25
3243 Driver Take-Over Time When Resuming Control from Highly Automated Driving in Truck Platooning Scenarios

Authors: Bo Zhang, Ellen S. Wilschut, Dehlia M. C. Willemsen, Marieke H. Martens

Abstract:

With the rapid development of intelligent transportation systems, automated platooning of trucks is drawing increasing interest for its beneficial effects on safety, energy consumption and traffic flow efficiency. Nevertheless, one major challenge lies in the safe transition of control from the automated system back to the human drivers, especially when they have been inattentive after a long period of highly automated driving. In this study, we investigated driver take-over time after a system initiated request to leave the platooning system Virtual Tow Bar in a non-critical scenario. 22 professional truck drivers participated in the truck driving simulator experiment, and each was instructed to drive under three experimental conditions before the presentation of the take-over request (TOR): driver ready (drivers were instructed to monitor the road constantly), driver not-ready (drivers were provided with a tablet) and eye-shut. The results showed significantly longer take-over time in both driver not-ready and eye-shut conditions compared with the driver ready condition. Further analysis revealed hand movement time as the main factor causing long response time in the driver not-ready condition, while in the eye-shut condition, gaze reaction time also influenced the total take-over time largely. In addition to comparing the means, large individual differences can be found especially in two driver, not attentive conditions. The importance of a personalized driver readiness predictor for a safe transition is concluded.

Keywords: driving simulation, highly automated driving, take-over time, transition of control, truck platooning

Procedia PDF Downloads 224
3242 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences

Authors: M. Pomianek, M. Piszczek, M. Maciejewski

Abstract:

The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.

Keywords: eye tracking, fixation point, pupil size, virtual reality

Procedia PDF Downloads 104
3241 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality

Authors: Robert Jesiolowski, Monique Jesiolowski

Abstract:

Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.

Keywords: higher education, innovation, virtual reality, game-based learning, loci method

Procedia PDF Downloads 52
3240 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training

Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu

Abstract:

Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.

Keywords: exponential value, facilitate learning, gender difference, virtual reality

Procedia PDF Downloads 62
3239 Virtual Reality for Post COVID-19 Stroke: A Case Report

Authors: Kasra Afsahi, Maryam Soheilifar

Abstract:

COVID-19 has been associated with stroke and neurological complications. The patient was a 59-year- old male who presented with sudden left hemiparesis and diplopia due to cavernous sinus thrombosis (CST) on 28/03/2020. The COVID-19 test was positive. Multislice CT (MSCT) showed ischemic infarction. He underwent surgical sinectomy 9 days after admission. Physiotherapy began for him in August 2020. Our game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and function for stroke. After 6 weeks of VR therapy plus conventional physiotherapy exercises (18 sessions, three times per week, 60 minutes each session), there were significant improvements in Brunnstrom Motor Recovery Stage (from “4” to “5”), Fugl-Meyer Scale score of upper extremity section (from 49 to 54), and Modified Barthel Index (from15 to 18). There were no adverse effects. This case with stroke post-COVID-19 due to the CST showed the usefulness of VR therapy used as an adjunct to conventional physiotherapy in improving affected upper extremity.

Keywords: COVID-19, stroke, virtual reality, rehabilitation

Procedia PDF Downloads 156
3238 Students’ Perceptions and Attitudes for Integrating ICube Technology in the Solar System Lesson

Authors: Noran Adel Emara, Elham Ghazi Mohammad

Abstract:

Qatar University is engaged in a systemic education reform that includes integrating the latest and most effective technologies for teaching and learning. ICube is high-immersive virtual reality technology is used to teach educational scenarios that are difficult to teach in real situations. The trends toward delivering science education via virtual reality applications have accelerated in recent years. However, research on students perceptions of integrating virtual reality especially ICube technology is somehow limited. Students often have difficulties focusing attention on learning science topics that require imagination and easily lose attention and interest during the lesson. The aim of this study was to examine students’ perception of integrating ICube technology in the solar system lesson. Moreover, to explore how ICube could engage students in learning scientific concept of the solar system. The research framework included the following quantitative research design with data collection and analysis from questionnaire results. The solar system lesson was conducted by teacher candidates (Diploma students) who taught in the ICube virtual lab in Qatar University. A group of 30 students from eighth grade were randomly selected to participate in the study. Results showed that the students were extremely engaged in learning the solar system and responded positively to integrating ICube in teaching. Moreover, the students showed interest in learning more lessons through ICube as it provided them with valuable learning experience about complex situations.

Keywords: ICube, integrating technology, science education, virtual reality

Procedia PDF Downloads 256
3237 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 599
3236 Vr-GIS and Ar-GIS In Education: A Case Study

Authors: Ilario Gabriele Gerloni, Vincenza Carchiolo, Alessandro Longheu, Ugo Becciani, Eva Sciacca, Fabio Vitello

Abstract:

ICT tools and platforms endorse more and more educational process. Many models and techniques for people to be educated and trained about specific topics and skills do exist, as classroom lectures with textbooks, computers, handheld devices and others. The choice to what extent ICT is applied within learning contexts is related to personal access to technologies as well as to the infrastructure surrounding environment. Among recent techniques, the adoption of Virtual Reality (VR) and Augmented Reality (AR) provides significant impulse in fully engaging users senses. In this paper, an application of AR/VR within Geographic Information Systems (GIS) context is presented. It aims to provide immersive environment experiences for educational and training purposes (e.g. for civil protection personnel), useful especially for situations where real scenarios are not easily accessible by humans. First acknowledgments are promising for building an effective tool that helps civil protection personnel training with risk reduction.

Keywords: education, virtual reality, augmented reality, GIS, civil protection

Procedia PDF Downloads 149
3235 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations

Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau

Abstract:

The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.

Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device

Procedia PDF Downloads 317
3234 Immersive Learning in University Classrooms

Authors: Raminder Kaur

Abstract:

This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.

Keywords: virtual reality, anthropology, immersive learning, university

Procedia PDF Downloads 38
3233 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 119
3232 Video Games Technologies Approach for Their Use in the Classroom

Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.

Keywords: virtual reality, interactive technologies, video games, educational materials

Procedia PDF Downloads 622
3231 Creating a Virtual Perception for Upper Limb Rehabilitation

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee

Abstract:

This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.

Keywords: physical rehabilitation, mirror neuron, virtual reality, stroke therapy

Procedia PDF Downloads 398
3230 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production

Authors: Deepak Singh, Rail Kuliev

Abstract:

This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.

Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring

Procedia PDF Downloads 48
3229 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction

Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung

Abstract:

In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.

Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality

Procedia PDF Downloads 440
3228 Augmented Tourism: Definitions and Design Principles

Authors: Eric Hawkinson

Abstract:

After designing and implementing several iterations of implementations of augmented reality (AR) in tourism, this paper takes a deep look into design principles and implementation strategies of using AR at destination tourism settings. The study looks to define augmented tourism from past implementations as well as several cases, uses designed and implemented for tourism. The discussion leads to formation of frameworks and best practices for AR as well as virtual reality( VR) to be used in tourism settings. Some main affordances include guest autonomy, customized experiences, visitor data collection and increased electronic word-of-mouth generation for promotion purposes. Some challenges found include the need for high levels of technology infrastructure, low adoption rates or ‘buy-in’ rates, high levels of calibration and customization, and the need for maintenance and support services. Some suggestions are given as to how to leverage the affordances and meet the challenges of implementing AR for tourism.

Keywords: augmented tourism, augmented reality, eTourism, virtual tourism, tourism design

Procedia PDF Downloads 338
3227 Augmented Reality in Teaching Children with Autism

Authors: Azadeh Afrasyabi, Ali Khaleghi, Aliakbar Alijarahi

Abstract:

Training at an early age is so important, because of tremendous changes in adolescence, including the formation of character, physical changes and other factors. One of the most sensitive sectors in this field is the children with a disability and are somehow special children who have trouble in communicating with their environment. One of the emerging technologies in the field of education that can be effectively profitable called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The purpose of this paper is to propose an effective training method for special and disabled children based on augmented reality. Of course, in particular, the efficiency of augmented reality in teaching children with autism will consider, also examine the various aspect of this disease and different learning methods in this area.

Keywords: technology in education, augmented reality, special education, teaching methods

Procedia PDF Downloads 347
3226 Design of a Virtual Reality System for Children with Developmental Coordination Disorder

Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng

Abstract:

Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.

Keywords: virtual reality, virtual reality system, developmental coordination disorder, children

Procedia PDF Downloads 85
3225 An Era of Arts: Examining Intersection of Technology and Museums

Authors: Vivian Li

Abstract:

With the rapid development of technology, virtual reality (VR) and augmented reality (AR) are becoming increasingly prominent in our lives. Museums have led the way in digitization, offering their collections to the wider public through the open internet, which is dramatically changing our experience of art. Technology is also being implemented into our physical art-viewing experience, enabling museums to capture historical sites while creating a more immersive experience for patrons. This study takes a qualitative approach, examining secondary sources and synthesizing information from interviews with field professionals to answer the question: to what extent is the contemporary perception of art transformed by the digitization of art museums? The findings establish that museums are becoming increasingly open with their collections, utilizing digitization to spread their intellectual content to people worldwide and to diversify their audiences. The use of VR and AR is also enabling museums to preserve and showcase historical artifacts and sites in a more interactive and user-focused way. Technology is also crafting new forms of art and art museums. Ultimately, the intersection of technology and museums is not changing the definition of art but rather offering new modes for the public to experience and learn about arts and history.

Keywords: art, augmented reality, digitization, museums, technology, virtual reality

Procedia PDF Downloads 95
3224 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 52
3223 Multiplayer RC-car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative Augmented Reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: multiplayer, RC-car, collaborative environment, augmented reality

Procedia PDF Downloads 257
3222 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms

Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy

Abstract:

The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.

Keywords: virtual, holographic, health information platform, personalized interactive medical information

Procedia PDF Downloads 51
3221 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment

Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri

Abstract:

Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.

Keywords: image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality

Procedia PDF Downloads 242
3220 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model

Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano

Abstract:

Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.

Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology

Procedia PDF Downloads 103
3219 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 87