Search results for: soil quality index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14442

Search results for: soil quality index

14172 Impact of Wastewater Irrigation on Soil and Vegetable Quality in Peri Urban Cropping System

Authors: Neelam Patel

Abstract:

Farmers in peri-urban areas of developing countries depend on wastewater for Irrigation but with great environmental and health hazards. Since, irrigation with wastewater is growing in the developing countries but its suitability to environment and other health factors should be checked. Metal pollution is a very serious issue these days, various neuro, physical and mental disorders are prevailing due to the metal pollution. Waste water contaminated with heavy metals got accumulated in the soil and then bioaccumulated in the vegetables irrigated with waste water. A 3-year field experiment on cauliflower has been done by using wastewater with two different methods of irrigation i.e. Drip and Flood irrigation and checked the impact on the cauliflower and soil quality. Heavy metals (Cr, Cu, Ni, Zn and Pb) have been studied in wastewater used for the irrigation and their accumulation in the soil and vegetable was studied. The study reveals that the concentration of heavy metals increases by 100 times from initial in soil. After 3 years, the concentration of Copper(41 ppm) Chromium(39.4 ppm) Lead(62.2ppm) Zinc(100.5 ppm) and Nickel(75.7 ppm) in Flood irrigated soil while in Drip irrigated soil , Copper (36.4 ppm) Chromium(36.8 ppm) Lead(53.7 ppm) Zinc(70.3 ppm) and Nickel (53.9 ppm). In vegetable, the wastewater irrigated shows an increase in the concentration of metals with the time and the accumulation of Nickel (6.98ppm), Lead (30.18 ppm) and Zinc (55.83 ppm) in drip irrigated while in flood irrigated, Nickel (30.58 ppm), Lead (73.95ppm) Zinc (93.50 ppm) and Copper (54.58 ppm) in edible part of cauliflower which is above the permissible limits suggested by different international agencies. On other hand, the nutrients content i.e. Nitrogen, Phosphorus and Potassium in soil was increased in concentration with time. The study pointed out that the metal contaminated waste water consisting the nutrients in it but also heavy metals which causes health issues in human. While the increase in concentration of nutrients in the soil indirectly helpful to the farmers economically by restricting the use of fertilizers. But the metal pollution directly affects the health of human being. The different method of irrigation suggested that the drip irrigated vegetable acquired less metal then the flood one and is a better combo with the waste water for the irrigation.

Keywords: drip irrigation, heavy metals, metal contamination, waste water

Procedia PDF Downloads 293
14171 Hydrogeochemical Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria

Authors: Moses Oghenenyoreme Eyankware, Christian Ogubuchi Ede

Abstract:

Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film.

Keywords: water, quality, suitability, anthropogenic, Nigeria

Procedia PDF Downloads 176
14170 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 40
14169 Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

Authors: Ali Ghodsbin Jahromi, Ehsan Moradi

Abstract:

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.

Keywords: pipe ovality, soil compaction, finite element, pipe thickness

Procedia PDF Downloads 121
14168 Development IoT System for Smart Maize Production in Nigeria

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Luka

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. In this research, an Internet of Things test kit was developed to fill in the gaps created by wet soil analysis. The kit comprises components that were used to measure Nitrogen, Phosphorous and potassium (N, P, K) soil content, soil temperature and soil moisture at a series of intervals. In this implementation, the fieldwork was carried out within 0.2 hectares of land divided into smaller plots. Nitrogen values from the three reps range from 14.8 – 15mg/kg, Phosphorous 20.2-21.4 mg/kg, and Potassium 50.2-53 mg/kg. This information with soil moisture information obtained enabled the farmers to make informed and precise decisions on fertilizer applications, and wastage was avoided.

Keywords: internet of things, soil Nutrients, test kit, soil temperature

Procedia PDF Downloads 25
14167 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 196
14166 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water

Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli

Abstract:

Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.

Keywords: drinking water, health risk assessment, heavy metals, pollution index

Procedia PDF Downloads 107
14165 Evaluation of Subsurface Drilling and Geo Mechanic Properties Based on Stratum Index Factor for Humanities Environment

Authors: Abdull Halim Abdul, Muhaimin Sulam

Abstract:

This paper is about a subsurface study of Taman Pudu Ulu, Cheras, Kuala Lumpur with emphasize of Geo mechanic properties based on stratum index factor in humanities environment. Subsurface drilling and seismic data were used to understand the subsurface condition of the study area such as the type and thickness of the strata. Borehole and soil samples were recovered Geo mechanic properties of the area by conducting number of experiments. Taman Pudu Ulu overlies the Kuala Lumpur Limestone formation that is known for its karstic features such as caves and cavities. Hence by knowing the Geo mechanic properties such as the normal strain and shear strain we can plan a safer and economics construction that is plan at the area in the future.

Keywords: stratum, index factor, geo mechanic properties, humanities environment

Procedia PDF Downloads 468
14164 Geochemical Evaluation Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria

Authors: Moses Oghnennyoreme Eyankware, Christian Ogubuchi Ede

Abstract:

Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film.

Keywords: water, quality, suitability, anthropogenic, Nigeria

Procedia PDF Downloads 141
14163 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management

Authors: Sefa Aksu, Ünal Kızıl

Abstract:

For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.

Keywords: geostatistics, GIS, nutrient management, soil mapping

Procedia PDF Downloads 347
14162 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 231
14161 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 211
14160 Food Security in the Middle East and North Africa

Authors: Sara D. Garduno-Diaz, Philippe Y. Garduno-Diaz

Abstract:

To date, one of the few comprehensive indicators for the measurement of food security is the Global Food Security Index. This index is a dynamic quantitative and qualitative bench marking model, constructed from 28 unique indicators, that measures drivers of food security across both developing and developed countries. Whereas the Global Food Security Index has been calculated across a set of 109 countries, in this paper we aim to present and compare, for the Middle East and North Africa (MENA), 1) the Food Security Index scores achieved and 2) the data available on affordability, availability, and quality of food. The data for this work was taken from the latest (2014) report published by the creators of the GFSI, which in turn used information from national and international statistical sources. According to the 2014 Global Food Security Index, MENA countries rank from place 17/109 (Israel, although with resent political turmoil this is likely to have changed) to place 91/109 (Yemen) with household expenditure spent in food ranging from 15.5% (Israel) to 60% (Egypt). Lower spending on food as a share of household consumption in most countries and better food safety net programs in the MENA have contributed to a notable increase in food affordability. The region has also however experienced a decline in food availability, owing to more limited food supplies and higher volatility of agricultural production. In terms of food quality and safety the MENA has the top ranking country (Israel). The most frequent challenges faced by the countries of the MENA include public expenditure on agricultural research and development as well as volatility of agricultural production. Food security is a complex phenomenon that interacts with many other indicators of a country’s well-being; in the MENA it is slowly but markedly improving.

Keywords: diet, food insecurity, global food security index, nutrition, sustainability

Procedia PDF Downloads 324
14159 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 126
14158 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model

Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani

Abstract:

The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.

Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil

Procedia PDF Downloads 287
14157 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 93
14156 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 373
14155 Measurement of Greenhouse Gas Emissions from Sugarcane Plantation Soil in Thailand

Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait

Abstract:

Continuous measurements of greenhouse gases (GHGs) emitted from soils are required to understand diurnal and seasonal variations in soil emissions and related mechanism. This understanding plays an important role in appropriate quantification and assessment of the overall change in soil carbon flow and budget. This study proposes to monitor GHGs emissions from soil under sugarcane cultivation in Thailand. The measurements were conducted over 379 days. The results showed that the total net amount of GHGs emitted from sugarcane plantation soil amounts to 36 Mg CO2eq ha-1. Carbon dioxide (CO2) and nitrous oxide (N2O) were found to be the main contributors to the emissions. For methane (CH4), the net emission was found to be almost zero. The measurement results also confirmed that soil moisture content and GHGs emissions are positively correlated.

Keywords: soil, GHG emission, sugarcane, agriculture, Thailand

Procedia PDF Downloads 400
14154 Relationships among Sleep Quality and Quality of Life in Oncology Nurses

Authors: Yi-Fung Lin, Pei-Chen Tsai

Abstract:

Background: The hospital healthcare team provides 24-hour patient care, and therefore shift-work is inevitable in the nursing field. There is an increased awareness that shift-work affecting circadian rhythms may cause various health problems, especially in poor sleep quality, which may harm the quality of life. Purposes: The purpose of this study was to investigate the influences of demographic characteristics on nurses’ sleep quality and quality of life and the relationship between these predictors of nurses’ quality of life. Methods: A cross-sectional, descriptive correlational study was conducted with purposive sampling of 520 female nurses in a medical center in north Taiwan from July to September 2014. Data were collected with structured questionnaires using Psychometric Evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) and the World Health Organization Quality of Life (WHOQOL-BREF). Outcomes: The main results include: 1) Irregular menstruation, non-regular exercisers, and more daily caffeine consumption have negative impacts on sleep quality. 2) Younger age, fewer children, low education level, low annual income, irregular menstruation, pain during menstrual cycles, non-regular exercisers, constipation, and poor sleep quality all contribute negative impacts on the quality of life. 3) The odds ratio of sleep disturbance between 12-hour shifts and 8-hour shifts was 2.26, but there was no significant difference regarding their quality of life scores. Conclusion: This study showed that there is a strong correlation between oncology nurses’ sleep quality and quality of life. Sleep quality is a significant predictor of quality of life in oncology nurses.

Keywords: oncology nurses, sleep quality, quality of life, shift-work

Procedia PDF Downloads 123
14153 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim

Authors: Fatima Mehmood, Khalid Farooq

Abstract:

After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slope

Keywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability

Procedia PDF Downloads 133
14152 Weed Out the Bad Seeds: The Impact of Strategic Portfolio Management on Patent Quality

Authors: A. Lefebre, M. Willekens, K. Debackere

Abstract:

Since the 1990s, patent applications have been booming, especially in the field of telecommunications. However, this increase in patent filings has been associated with an (alleged) decrease in patent quality. The plethora of low-quality patents devalues the high-quality ones, thus weakening the incentives for inventors to patent inventions. Despite the rich literature on strategic patenting, previous research has neglected to emphasize the importance of patent portfolio management and its impact on patent quality. In this paper, we compare related patent portfolios vs. nonrelated patents and investigate whether the patent quality and innovativeness differ between the two types. In the analyses, patent quality is proxied by five individual proxies (number of inventors, claims, renewal years, designated states, and grant lag), and these proxies are then aggregated into a quality index. Innovativeness is proxied by two measures: the originality and radicalness index. Results suggest that related patent portfolios have, on average, a lower patent quality compared to nonrelated patents, thus suggesting that firms use them for strategic purposes rather than for the extended protection they could offer. Even upon testing the individual proxies as a dependent variable, we find evidence that related patent portfolios are of lower quality compared to nonrelated patents, although not all results show significant coefficients. Furthermore, these proxies provide evidence of the importance of adding fixed effects to the model. Since prior research has found that these proxies are inherently flawed and never fully capture the concept of patent quality, we have chosen to run the analyses with individual proxies as supplementary analyses; however, we stick with the comprehensive index as our main model. This ensures that the results are not dependent upon one certain proxy but allows for multiple views of the concept. The presence of divisional applications might be linked to the level of innovativeness of the underlying invention. It could be the case that the parent application is so important that firms are going through the administrative burden of filing for divisional applications to ensure the protection of the invention and the preemption of competition. However, it could also be the case that the preempting is a result of divisional applications being used strategically as a backup plan and prolonging strategy, thus negatively impacting the innovation in the portfolio. Upon testing the level of novelty and innovation in the related patent portfolios by means of the originality and radicalness index, we find evidence for a significant negative association with related patent portfolios. The minimum innovation that has been brought on by the patents in the related patent portfolio is lower compared to the minimum innovation that can be found in nonrelated portfolios, providing evidence for the second argument.

Keywords: patent portfolio management, patent quality, related patent portfolios, strategic patenting

Procedia PDF Downloads 66
14151 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)

Authors: M. A. El-Khateeb

Abstract:

The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.

Keywords: bioremediation, bacteria, fungi, Sakaka

Procedia PDF Downloads 330
14150 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief

Authors: Rabah Younes

Abstract:

The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.

Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 279
14149 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 310
14148 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient

Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid

Abstract:

Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.

Keywords: macronutrients absorption, optical spectroscopy, soil, absorption

Procedia PDF Downloads 256
14147 Extracellular Enzymes as Promising Soil Health Indicators: Assessing Response to Different Land Uses Using Long-Term Experiments

Authors: Munisath Khandoker, Stephan Haefele, Andy Gregory

Abstract:

Extracellular enzymes play a key role in soil organic carbon (SOC) decomposition and nutrient cycling and are known indicators for soil health; however, it is not understood how these enzymes respond to different land uses and their relationships to other soil properties have not been extensively reviewed. The relationships among the activities of three soil enzymes: β-glucosaminidase (NAG), phosphomonoesterase (PHO) and β-glucosidase (GLU), were examined. The impact of soil organic amendments, soil types and land management on soil enzyme activities were reviewed, and it was hypothesized that soils with increased SOC have increased enzyme activity. Long-term experiments at Rothamsted Research Woburn and Harpenden sites in the UK were used to evaluate how different management practices affect enzyme activity involved in carbon (C) and nitrogen (N) cycling in the soil. Samples were collected from soils with different organic treatments such as straw, farmyard manure (FYM), compost additions, cover crops and permanent grass cover to assess whether SOC can be linked with increased levels of enzymatic activity and what influence, if any, enzymatic activity has on total C and N in the soil. Investigating the interactions of important enzymes with soil characteristics and SOC can help to better understand the health of soils. Studies on long-term experiments with known histories and large datasets can better help with this. SOC tends to decrease during land use changes from natural ecosystems to agricultural systems; therefore, it is imperative that agricultural lands find ways to increase and/or maintain SOC in the soil.

Keywords: biological soil health indicators, extracellular enzymes, soil health, soil, microbiology

Procedia PDF Downloads 46
14146 Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines

Authors: Dernie Taganna Olguera

Abstract:

Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines.

Keywords: soil degradation, soil erosion, marginal uplands, Samar island, Philippines

Procedia PDF Downloads 375
14145 The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat

Authors: Abolfazl Hedayatipoor, Mohammad Younesi Alamooti

Abstract:

In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.

Keywords: rainfed agriculture, conservative tillage, energy consumption, wheat

Procedia PDF Downloads 181
14144 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure

Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai

Abstract:

Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.

Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure

Procedia PDF Downloads 103
14143 Evaluation of Surface Roughness Condition Using App Roadroid

Authors: Diego de Almeida Pereira

Abstract:

The roughness index of a road is considered the most important parameter about the quality of the pavement, as it has a close relation with the comfort and safety of the road users. Such condition can be established by means of functional evaluation of pavement surface deviations, measured by the International Roughness Index (IRI), an index that came out of the international evaluation of pavements, coordinated by the World Bank, and currently owns, as an index of limit measure, for purposes of receiving roads in Brazil, the value of 2.7 m/km. This work make use of the e.IRI parameter, obtained by the Roadroid app. for smartphones which use Android operating system. The choice of such application is due to the practicality for the user interaction, as it possesses a data storage on a cloud of its own, and the support given to universities all around the world. Data has been collected for six months, once in each month. The studies begun in March 2018, season of precipitations that worsen the conditions of the roads, besides the opportunity to accompany the damage and the quality of the interventions performed. About 350 kilometers of sections of four federal highways were analyzed, BR-020, BR-040, BR-060 and BR-070 that connect the Federal District (area where Brasilia is located) and surroundings, chosen for their economic and tourist importance, been two of them of federal and two others of private exploitation. As well as much of the road network, the analyzed stretches are coated of Hot Mix Asphalt (HMA). Thus, this present research performs a contrastive discussion between comfort conditions and safety of the roads under private exploitation in which users pay a fee to the concessionaires so they could travel on a road that meet the minimum requirements for usage, and regarding the quality of offered service on the roads under Federal Government jurisdiction. And finally, the contrast of data collected by National Department of Transport Infrastructure – DNIT, by means of a laser perfilometer, with data achieved by Roadroid, checking the applicability, the practicality and cost-effective, considering the app limitations.

Keywords: roadroid, international roughness index, Brazilian roads, pavement

Procedia PDF Downloads 61