Search results for: resonant column/torsional simple shear
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4997

Search results for: resonant column/torsional simple shear

4967 Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel

Authors: Xiaolin Tang, Wei Yang, Xiaoan Chen

Abstract:

The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided.

Keywords: dual mass flywheel, hybrid electric vehicle, torsional vibration, powertrain, dynamics

Procedia PDF Downloads 375
4966 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam

Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche

Abstract:

Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.

Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam

Procedia PDF Downloads 359
4965 Torsional Design Method of Asymmetric and Irregular Building under Horizontal Earthquake Action

Authors: Radhwane Boudjelthia

Abstract:

Based upon elaborate analysis on torsional design methods of asymmetric and irregular structure under horizontal earthquake action, it points out that the main design principles of an asymmetric building subjected to horizontal earthquake are: the torsion of vertical members induced by the torsion angle of the floor (rigid diaphragm) cannot exceed the allowable value, the inter-story displacement at outermost frame or shear wall should be less than that required by design code, stresses in plane of the slab should be controlled within acceptable extent under different intensity earthquakes. That current seismic design code only utilizes the torsion displacement ratio to control the floor torsion, which seems not reasonable enough since its connotation is the multiple of the floor torsion angle and the distance of floor mass center to the edge frame or shear wall.

Keywords: earthquake, building, seismic forces, displacement, resonance, response

Procedia PDF Downloads 314
4964 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 240
4963 A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures

Authors: Abdul Hakim Chikho

Abstract:

Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified.

Keywords: column ultimate load, semi rigid connections, steel column, infill panel, steel structure

Procedia PDF Downloads 144
4962 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 343
4961 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 101
4960 Load Carrying Capacity of Soils Reinforced with Encased Stone Columns

Authors: S. Chandrakaran, G. Govind

Abstract:

Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also.

Keywords: stone columns, encasement, shear strength, plate load test

Procedia PDF Downloads 209
4959 Compressive and Torsional Strength of Self-Compacting Concrete

Authors: Moosa Mazloom, Morteza Mehrvand

Abstract:

The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes.

Keywords: self-compacting concrete, rectangular prism, torsional strength

Procedia PDF Downloads 484
4958 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam

Procedia PDF Downloads 335
4957 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: torsional vibration, full-size model, scale model, scaling laws

Procedia PDF Downloads 367
4956 Design Recommendation for Lateral Bracing of Highly Ductile Beam Members

Authors: Mathias M. L. Zarate, Erwin

Abstract:

In the design of an H-shaped steel beam, lateral torsional buckling is one of the main considerations. The beam should be braced properly so that the plastic moment capacity can be well developed. Although the design guideline for lateral bracing has been available for decades ago, the design guideline was established based on past research which mostly used a very simple model to derive the proposed design equations provided. Most of the beam structures considered in the past research were simply supported beams subjected to transverse loading. Recalling that a simply supported beam is a kind of beam structure that is the most susceptible to lateral torsional buckling, the design requirements derived based on this structure may be too conservative for beams with other boundary conditions. As in the beams of a moment-resisting frame, both beam ends are rigidly connected to the column and thus have higher resistance against the lateral torsional buckling. On the other hand, the use of lateral bracing to support the bottom flange of the beams in building structures often becomes an obstacle. If the actual boundary condition of the beams in moment resisting is considered when analyzing the beam bracing requirements, the chance that a beam does not need to be braced at the bottom flange will become higher. Nowadays, by utilizing the power of computers to conduct numerical analysis, the buckling behavior of the beams with various kinds of boundary conditions and loading configurations can be explored conveniently as long as a reliable analysis model can be developed. In this study, finite element analysis is conducted to investigate the buckling behavior of H-shaped steel beams with various kinds of cross-sections and lengths subjected to seismic-type loading. The considered beam is laterally restrained along the top flange of the beam to account for the presence of floor slab, while no lateral bracing is provided to the bottom flange. The lateral torsional buckling of the beam is evaluated by observing the magnitude of the twist angle during the loading history. The main parameters that affect the buckling potential of the beam are found to be the beam length-to-beam depth ratio and the beam depth-to-flange width ratio. Higher values of these two parameters indicate a higher lateral torsional buckling potential in the beam. The limit values for the two design parameters are found to be related to the desired acceptance criteria which in this case is the magnitude of the twist angle considered as acceptable.

Keywords: H-shaped steel beam, lateral bracing design, lateral torsional buckling, seismic design

Procedia PDF Downloads 22
4955 Stationary Energy Partition between Waves in a Carbyne Chain

Authors: Svetlana Nikitenkova, Dmitry Kovriguine

Abstract:

Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum.

Keywords: resonant triplet, Rayleigh–Jeans law, amplitude dispersion, carbyne

Procedia PDF Downloads 409
4954 High-Frequency Half Bridge Inverter Applied to Induction Heating

Authors: Amira Zouaoui, Hamed Belloumi, Ferid Kourda

Abstract:

This paper presents the analysis and design of a DC–AC resonant converter applied to induction heating. The proposed topology based on the series-parallel half-bridge resonant inverter is described. It can operate with Zero-Voltage Switching (ZVS). At the resonant frequency, the secondary current is amplified over the heating coil with small switching angle, which keeps the reactive power low and permits heating with small current through the resonant inductor and the transformer. The operation and control principle of the proposed high frequency inverter is described and verified through simulated and experimental results.

Keywords: induction heating, inverter, high frequency, resonant

Procedia PDF Downloads 434
4953 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 114
4952 Estimation of Seismic Drift Demands for Inelastic Shear Frame Structures

Authors: Ali Etemadi, Polat H. Gulkan

Abstract:

The drift spectrum derived through the continuous shear-beam and wave propagation theory is known to be useful appliance to measure of the demand of pulse like near field ground motions on building structures. As regards, many of old frame buildings with poor or non-ductile column elements, pass the elastic limits and blurt the post yielding hysteresis degradation responses when subjected to such impulsive ground motions. The drift spectrum which, is based on a linear system cannot be predicted the overestimate drift demands arising from inelasticity in an elastic plastic systems. A simple procedure to estimate the drift demands in shear-type frames which, respond over the elastic limits is described and effect of hysteresis degradation behavior on seismic demands is clarified. Whereupon the modification factors are proposed to incorporate the hysteresis degradation effects parametrically. These factors are defined with respected to the linear systems. The method can be applicable for rapid assessment of existing poor detailed, non-ductile buildings.

Keywords: drift spectrum, shear-type frame, stiffness and strength degradation, pinching, smooth hysteretic model, quasi static analysis

Procedia PDF Downloads 485
4951 The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity

Authors: M. Nghizaderokni, A. Janalizadechobbasty, M. Azizi, M. Naghizaderokni

Abstract:

The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes.

Keywords: soil, liquefaction, shear wave velocity, standard penetration resistance

Procedia PDF Downloads 366
4950 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 341
4949 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt

Authors: Walid El Kamash

Abstract:

Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.

Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil

Procedia PDF Downloads 343
4948 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 444
4947 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 473
4946 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 46
4945 Pushover Analysis of Reinforced Concrete Beam-Column Joint Strengthening with Ultra High Performance Concrete

Authors: Abdulsamee Halahla, Emad Allout

Abstract:

The purpose of this research is to study the behavior of exterior beam-column joints (BCJs) strengthened with ultra-high performance concrete (UHPC), in terms of the shear strength and maximum displacement using pushover analysis at the tip of the beam. A finite element (F.E) analysis was performed to study three main parameters – the level of the axial load in the column (N), the beam shear reinforcement (Av/s)B, and the effect of using UHPC. The normal concrete at the studied joint region was replaced by UHPC. The model was verified by using experimental results taken from the literature. The results showed that the UHPC contributed to the transference of the plastic hinge from the joint to the beam-column interface. In addition, the strength of the UHPC-strengthened joints was enhanced dramatically from 8% to 38% for the joints subjected to 12.8MPa and zero axial loads, respectively. Moreover, the UHPC contributed in improving the maximum deflection. This improvement amounted to 1% and 176% for the joints subjected to zero and 12.8MPa axial load, respectively.

Keywords: ultra high performance concrete, ductility, reinforced concrete joints, finite element modeling, nonlinear behavior; pushover analysis

Procedia PDF Downloads 105
4944 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 100
4943 Comparative Study of R.C.C. Steel and Concrete Building

Authors: Mahesh Suresh Kumawat

Abstract:

Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical.

Keywords: composite beam, column, RCC column, RCC beam, shear connector, SAP 2000 software

Procedia PDF Downloads 410
4942 Stress Analysis of Tubular Bonded Joints under Torsion and Hygrothermal Effects Using DQM

Authors: Mansour Mohieddin Ghomshei, Reza Shahi

Abstract:

Laminated composite tubes with adhesively bonded joints are widely used in aerospace and automotive industries as well as oil and gas industries. In this research, adhesively tubular single lap joints subjected to torsional and hygrothermal loadings are studied using the differential quadrature method (DQM). The analysis is based on the classical shell theory. At first, an approximate closed form solution is developed by omitting the lateral deflections in the connecting tubes. Using the analytical model, the circumferential displacements in tubes and the shear stresses in the interfacing adhesive layer are determined. Then, a numerical formulation is presented using DQM in which the lateral deflections are taken into account. By using the DQM formulation, the circumferential and radial displacements in tubes as well as shear and peel stresses in the adhesive layer are calculated. Results obtained from the proposed DQM solutions are compared well with those of the approximate analytical model and those of some published references. Finally using the DQM model, parametric studies are carried out to investigate the influence of various parameters such as adhesive layer thickness, torsional loading, overlap length, tubes radii, relative humidity, and temperature.

Keywords: adhesively bonded joint, differential quadrature method (DQM), hygrothermal, laminated composite tube

Procedia PDF Downloads 269
4941 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis

Authors: Manoj Malviya, Shubham Shinde

Abstract:

The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.

Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection

Procedia PDF Downloads 323
4940 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions

Authors: S. Mogili, J. S. Kuang, N. Zhang

Abstract:

Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.

Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance

Procedia PDF Downloads 194
4939 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity

Procedia PDF Downloads 229
4938 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes

Authors: Zhuang Guo

Abstract:

In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.

Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty

Procedia PDF Downloads 46