Search results for: reduce the cost of maintenance
11966 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management
Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan
Abstract:
During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.Keywords: aircraft maintenance, downtime, downtime cost, maintenance cost
Procedia PDF Downloads 35411965 Aircraft Line Maintenance Equipped with Decision Support System
Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar
Abstract:
The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management
Procedia PDF Downloads 50311964 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model
Authors: Boukelkoul Lahcen
Abstract:
The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.Keywords: cost, finite state, Markov model, operation and maintenance
Procedia PDF Downloads 53311963 An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming
Authors: Meesun Sun, Yongmin Kim
Abstract:
Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management.Keywords: affordability analysis, cost estimating relationship, helicopter, linear programming, maintenance cost
Procedia PDF Downloads 13911962 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 60511961 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.Keywords: GeG company, maintainability, maintenance costs, reliability-center-maintenance
Procedia PDF Downloads 22111960 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company
Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.Keywords: Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability-center-maintenance
Procedia PDF Downloads 30211959 Mitigation of High Voltage Equipment Design Deficiencies for Improved Operation and Maintenance
Authors: Riyad Awad, Abdulmohsen Alghadeer, Meshari Otaibi
Abstract:
Proper operation and maintenance (O&M) activities of high voltage equipment can lead to an increased asset lifecycle and maintain its integrity and reliability. Such a vital process is important to be proactively considered during equipment design and manufacturing phases by removing and eliminating any obstacles in the equipment which adversely affect the (O&M) activities. This paper presents a gap analysis pertaining to difficulties in performing operations and maintenance (O&M) high voltage electrical equipment, includes power transformers, switch gears, motor control center, disconnect switches and circuit breakers. The difficulties are gathered from field personnel, equipment design review comments, quality management system, and lessons learned database. The purpose of the gap analysis is to mitigate and prevent the (O&M) difficulties as early as possible in the design stage of the equipment lifecycle. The paper concludes with several recommendations and corrective actions for all identified gaps in order to reduce the cost (O&M) difficulties and improve the equipment lifecycle.Keywords: operation and maintenance, high voltage equipment, equipment lifecycle, reduce the cost of maintenance
Procedia PDF Downloads 16811958 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 15111957 Reliability-Centered Maintenance Application for the Development of Maintenance Strategy for a Cement Plant
Authors: Nabil Hameed Al-Farsi
Abstract:
This study’s main goal is to develop a model and a maintenance strategy for a cement factory called Arabian Cement Company, Rabigh Plant. The proposed work here depends on Reliability centric maintenance approach to develop a strategy and maintenance schedule that ensures increasing the reliability of the production system components, thus ensuring continuous productivity. The cost-effective maintenance of the plant’s dependability performance is the key goal of durability-based maintenance is. The cement plant consists of 7 important steps, so, developing a maintenance plan based on Reliability centric maintenance (RCM) method is made up of 10 steps accordingly starting from selecting units and data until performing and updating the model. The processing unit chosen for the analysis of this case is the calcinatory unit regarding model’s validation and the Travancore Titanium Products Ltd (TTP) using the claimed data history acquired from the maintenance department maintenance from the mentioned company. After applying the proposed model, the results of the maintenance simulation justified the plant's existing scheduled maintenance policy being reconsidered. Results represent the need for preventive maintenance for all Class A criticality equipment instead of the planned maintenance and the breakdown one for all other equipment depends on its criticality and an FMEA report. Consequently, the additional cost of preventive maintenance would be offset by the cost savings from breakdown maintenance for the remaining equipment.Keywords: engineering, reliability, strategy, maintenance, failure modes, effects and criticality analysis (FMEA)
Procedia PDF Downloads 17311956 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants
Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer
Abstract:
Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 12811955 Developing Medium Term Maintenance Plan For Road Networks
Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy
Abstract:
Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.Keywords: infrastructure, asset management, optimization, maintenance plan
Procedia PDF Downloads 21811954 Sustainable Maintenance Model for Infrastructure in Egypt
Authors: S. Hasan, I. Beshara
Abstract:
Infrastructure maintenance is a great challenge facing sustainable development of infrastructure assets due to the high cost of passive implementation of a sustainable maintenance plan. An assessment model of sustainable maintenance for highway infrastructure projects in Egypt is developed in this paper. It helps in improving the implementation of sustainable maintenance criteria. Thus, this paper has applied the analytical hierarchy processes (AHP) to rank and explore the weight of 26 assessment indicators using three hierarchy levels containing the main sustainable categories and subcategories with related indicators. Overall combined weight of each indicator for sustainable maintenance evaluation has been calculated to sum up to a sustainable maintenance performance index (SMI). The results show that the factor "Preventive maintenance cost" has the highest relative contribution factor among others (13.5%), while two factors of environmental performance have the least weights (0.7%). The developed model aims to provide decision makers with information about current maintenance performance and support them in the decision-making process regarding future directions of maintenance activities. It can be used as an assessment performance tool during the operation and maintenance stage. The developed indicators can be considered during designing the maintenance plan. Practices for successful implementation of the model are also presented.Keywords: analytical hierarchy process, assessment performance Model, KPIs for sustainable maintenance, sustainable maintenance index
Procedia PDF Downloads 13811953 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 13011952 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints
Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann
Abstract:
This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.Keywords: rail-track components, maintenance, optimal clustering, possession capacity
Procedia PDF Downloads 26311951 Lean Philosophy towards the Enhancement of Maintenance Programs Efficiency with Particular Attention to Libyan Oil and Gas Scenario
Authors: Sulayman Adrees Mohammed, Ahmed Faraj Abd Alsameea
Abstract:
The ongoing hindrance for Libyan oil and gas companies is the persistent challenge of eradicating maintenance program failures that result in exorbitant costs and production setbacks. Accordingly, this research is prompted to introduce the concept of lean philosophy in maintenance, which aims to eliminate waste and enhance productivity in maintenance procedures through the identification and differentiation of value-adding (VA) and non-value-adding (NVA) activities. The purpose of this paper was to explore and describe the benefits that can be gained by adopting the Lean philosophy towards the enhancement of maintenance programs' efficiency from theoretical perspectives. The oil industry maintenance community in Libya now has an introduced tool by which they can effectively evaluate their maintenance program functionality and reduce the areas of non-value added activities within maintenance, thereby enhancing the availability of the equipment and the capacity of the oil and gas facilities.Keywords: efficiency, lean philosophy, Libyan oil and gas scenario, maintenance programs
Procedia PDF Downloads 10911950 Roadway Maintenance Management System
Authors: Chika Catherine Ayogu
Abstract:
Rehabilitation plays an important and integral part in the life of roadway rehabilitation management system. It is a systematic method for inspection and rating the roadway condition in a given area. The system performs a cost effective analysis of various maintenance and rehabilitation strategies. Finally the system prioritize and recommend roadway rehabilitation and maintenance to maximize results within a given budget amount. During execution of maintenance activity, the system also tracks labour, materials, equipment and cost for activities performed. The system implements physical assessment field inspection and rating of each street segment which is then entered into a database. The information is analyzed using a software, and provide recommendations and project future conditions. The roadway management system provides a deterioration curve for each segment based on input then assigns the most cost-effective maintenance strategy based on conditions, surface type and functional classification, and available budget. This paper investigates the roadway management system and its capabilities to assist in applying the right treatment to the right roadway at the right time so that expected service life of the roadway is extended as long as possible with acceptable cost.Keywords: effectiveness, rehabilitation, roadway, software system
Procedia PDF Downloads 15211949 Technological Developments to Reduce Wind Blade Turbine Levelized Cost of Energy
Authors: Pedro Miguel Cardoso Carneiro, Ricardo André Nunes Borges, João Pedro Soares Loureiro, Hermínio Maio Graça Fernandes
Abstract:
Wind energy has been exponentially growing over the last years and will allow countries to progress regarding the decarbonization objective. In parallel, the maintenance activities have also been increasing in consequence of ageing and deterioration of the wind farms. The time available for wind blade maintenance is given by the weather window that is based upon weather conditions. Most of the wind blade repair and maintenance activities require a narrow window of temperature and humidity. Due to this limitation, the current weather windows result only on approximately 35% days/year are used for maintenance, that takes place mostly during summertime. This limitation creates large economic losses in the energy production of the wind towers, since they can be inoperative or with the energy production output reduced for days or weeks due to existing damages. Another important aspect is that the maintenance costs are higher due to the high standby time and seasonality imposed on the technicians. To reduce the relevant maintenance costs of blades and energy loses some technological developments were carried out to significantly improve this reality. The focus of this activity was to develop a series of key developments to have in the near future a suspended access equipment that can operate in harsh conditions, wind rain, cold/hot environment. To this end we have identified key areas that need to be revised and require new solutions to be found; a habitat system, multi-configurable roof and floor, roof and floor interface to blade, secondary attachment solutions to the blade and to the tower. On this paper we will describe the advances produced during a national R&D project made in partnership with an end-user (Onrope) and a test center (ISQ).Keywords: wind turbine maintenance, cost reduction, technological innovations, wind turbine blade
Procedia PDF Downloads 9311948 Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products
Authors: Pin-Wei Chiang, Wen-Liang Chang, Ruey-Huei Yeh
Abstract:
This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function.Keywords: finite planning horizon, second hand product, replacement, preventive maintenance, minimal repair
Procedia PDF Downloads 47311947 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 12311946 Effect of Climate Change on Road Maintenance in Bangladesh
Authors: Mohammed Russedul Islam, Shah M. Muniruzzaman, M. Kamrul-Al-Masud, Syed Sadat Morshed
Abstract:
Bangladesh is one of the most climate vulnerable countries in the world. According to scientists it is predicted that temperature will raise 1-3% and precipitation 20% by 2050 in Bangladesh. Increased temperature and precipitation will deteriorate pavement structure in an accelerated rate. The study has found that pavement life will reduce significantly due to rise in temperature and precipitation in in a coastal road in Bangladesh. It will cause to increase the maintenance cost of the road. The study has found that reduction in pavement life will be caused due the decrease in stiffness and strength parameters of the pavement material due to high temperature and precipitation. It has found that use of new material costlier than the existing one will be necessary to prevent the reduction of pavement life. Eventually it will increase the re-construction cost of the road. The study has used mechanistic-empirical analysis method with a software GAMES (General analysis on multi-layered elastic systems) to find out the effect of temperature and precipitation rise on the pavement life. The study will help to guide road engineers of Bangladesh to prepare in advance to fight with the climate change effect.Keywords: climate change, maintenance cost, mechanistic-empirical method, pavement life
Procedia PDF Downloads 37211945 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: water pipe networks, maintenance management, reliability analysis, optimum maintenance plan
Procedia PDF Downloads 15511944 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model
Authors: Adel A. Ghobbar, Varun Raman
Abstract:
The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability
Procedia PDF Downloads 13211943 Implementation of a Preventive Maintenance Plan to Improve the Availability of the “DRUM” Line at SAMHA (Brandt) Setif, Algeria
Authors: Fahem Belkacemi, Lyes Ouali
Abstract:
Maintenance strategies and assessments continue to be a major concern for companies today. The socio-economic bets of their competitiveness are closely linked to the activities and quality of maintenance. This work deals with a study of a preventive maintenance plan to improve the availability of the production line within SAMSUNG HOME APPLIANCE “SAMHA”, Setif, Algeria. First, we applied the method of analysis of failure modes, their impact, and criticality to reduce downtime and identification of the most critical elements. Finally, to improve the availability of the production line, we carried out a study of the current preventive maintenance plan in the production line workshop at the company level and according to the history sheet of machine failures. We proposed a preventive maintenance plan to improve the availability of the production line.Keywords: preventive maintenance, DRUM line, AMDEC, availability
Procedia PDF Downloads 7111942 Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering
Authors: Malay Niraj, Praveen Kumar
Abstract:
The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected.Keywords: maintenance strategy, overall equipment efficiency, value engineering, decision-making
Procedia PDF Downloads 40911941 Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines
Authors: Wen Liang Chang, Mei Wei Wang, Ruey Huei Yeh
Abstract:
This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate.Keywords: individual replacement, group replacement, replacement time, two machines, series connection system
Procedia PDF Downloads 48811940 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 29711939 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA
Procedia PDF Downloads 33011938 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 11911937 Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device
Authors: Wen Liang Chang
Abstract:
In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples.Keywords: second-hand device, preventive maintenance, replacement time, device failure
Procedia PDF Downloads 468