Search results for: radiation worker
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1675

Search results for: radiation worker

1495 The Impact of Information Technology Monitoring on Employee Theft and Productivity

Authors: Ajayi Oluwasola Felix

Abstract:

This paper examines how firm investments in technology-based employee monitoring impact both misconduct and productivity. We use unique and detailed theft and sales data from 392 restaurant locations from five firms that adopt a theft monitoring information technology (IT) product. We use difference-in-differences (DD) models with staggered adoption dates to estimate the treatment effect of IT monitoring on theft and productivity. We find significant treatment effects in reduced theft and improved productivity that appear to be primarily driven by changed worker behavior rather than worker turnover. We examine four mechanisms that may drive this productivity result: economic and cognitive multitasking, fairness-based motivation, and perceived increases of general oversight. The observed productivity results represent substantial financial benefits to both firms and the legitimate tip-based earnings of workers. Our results suggest that employee misconduct is not solely a function of individual differences in ethics or morality, but can also be influenced by managerial policies that can benefit both firms and employees.

Keywords: information technology, monitoring, misconduct, employee theft

Procedia PDF Downloads 376
1494 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 159
1493 Status of the European Atlas of Natural Radiation

Authors: G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, R. Braga, M. A. Hernández-Ceballos, M. De Cort

Abstract:

In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work.

Keywords: Europe, natural radiation, mapping, indoor radon

Procedia PDF Downloads 269
1492 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection

Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber

Abstract:

The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.

Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid

Procedia PDF Downloads 357
1491 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety

Authors: Ashraf Aly

Abstract:

The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.

Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues

Procedia PDF Downloads 33
1490 Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire

Authors: Yubo Bi, Xiao Chen, Shouxiang Lu

Abstract:

A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator.

Keywords: Burning Rate Emulator, fuel blends pool fire, flame height, radiation fraction

Procedia PDF Downloads 203
1489 Calculation of Solar Ultraviolet Irradiant Exposure of the Cornea through Sunglasses

Authors: Mauro Masili, Fernanda O. Duarte, Liliane Ventura

Abstract:

Ultraviolet (UV) radiation is electromagnetic waves from 100 – 400 nm wavelength. The World Health Organization and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend guidelines on the exposure of the eyes to UV radiation because it is correlated to ophthalmic diseases. Those exposure limits for an 8-h period are 1) UV radiant exposure should not exceed 30 J/m2 when irradiance is spectrally weighted using an actinic action spectrum; 2) unweighted radiant exposure in the UV-A spectral region 315 – 400 nm should not exceed 10 kJ/m2. Sunglasses play an important role in preventing eye injuries related to Sun exposure. We have calculated the direct and diffuse solar UV irradiance in a geometry that refers to an individual wearing a sunglass, in which the solar rays strike on a vertical surface. The diffuse rays are those scattered from the atmosphere and from the local environment. The calculations used the open-source SMARTS2 spectral model, in which we assumed a clear sky condition, aside from information about site location, date, time, ozone column, aerosols, and turbidity. In addition, we measured the spectral transmittance of a typical sunglasses lens and the global solar irradiance was weighted with the spectral transmittance profile of the lens. The radiant exposure incident on the eye’s surface was calculated in the UV and UV-A ranges following the ICNIRP’s recommendations for each day of the year. The tested lens failed the UV-A safe limit, while the UV limit failed to comply with this limit after the aging process. Hence, the ICNIRP safe limits should be considered in the standards to increase the protection against UV radiation on the eye.

Keywords: ICNIRP safe limits, ISO-12312-1, sunglasses, ultraviolet radiation

Procedia PDF Downloads 55
1488 Evaluation of the Gamma-H2AX Expression as a Biomarker of DNA Damage after X-Ray Radiation in Angiography Patients

Authors: Reza Fardid, Aliyeh Alipour

Abstract:

Introduction: Coronary heart disease (CHD) is the most common and deadliest diseases. A coronary angiography is an important tool for the diagnosis and treatment of this disease. Because angiography is performed by exposure to ionizing radiation, it can lead to harmful effects. Ionizing radiation induces double-stranded breaks in DNA, which is a potentially life-threatening injury. The purpose of the present study is an investigation of the phosphorylation of histone H2AX in the location of the double-stranded break in Peripheral blood lymphocytes as an indication of Biological effects of radiation on angiography patients. Materials and Methods: This method is based on measurement of the phosphorylation of histone (gamma-H2AX, gH2AX) level on serine 139 after formation of DNA double-strand break. 5 cc of blood from 24 patients with angiography were sampled before and after irradiation. Blood lymphocytes were removed, fixed and were stained with specific ϒH2AX antibodies. Finally, ϒH2AX signal as an indicator of the double-strand break was measured with Flow Cytometry Technique. Results and discussion: In all patients, an increase was observed in the number of breaks in double-stranded DNA after irradiation (20.15 ± 14.18) compared to before exposure (1.52 ± 0.34). Also, the mean of DNA double-strand break was showed a linear correlation with DAP. However, although induction of DNA double-strand breaks associated with radiation dose in patients, the effect of individual factors such as radiosensitivity and regenerative capacity should not be ignored. If in future we can measure DNA damage response in every patient angiography and it will be used as a biomarker patient dose, will look very impressive on the public health level. Conclusion: Using flow cytometry readings which are done automatically, it is possible to detect ϒH2AX in the number of blood cells. Therefore, the use of this technique could play a significant role in monitoring patients.

Keywords: coronary angiography, DSB of DNA, ϒH2AX, ionizing radiation

Procedia PDF Downloads 159
1487 Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: bamboo fiber, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 107
1486 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 505
1485 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression

Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily

Abstract:

Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.

Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression

Procedia PDF Downloads 203
1484 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 215
1483 Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems

Authors: Abdulla Almulla, Wafaa Mahdi

Abstract:

Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages.

Keywords: building materials, NORMs, HNBRA, radionuclides, activity concentrations, expert systems

Procedia PDF Downloads 128
1482 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis

Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack

Abstract:

Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).

Keywords: radiolysis, spent fuel, hydrogen, cyclotron

Procedia PDF Downloads 488
1481 Examining Professional Challenges for School Social Work in Swedish Elementary Schools: A Focus Group Study

Authors: Maria Kjellgren, Sara Lilliehorn, Urban Markström

Abstract:

Critical components that influence the role and performance of school social workers in Swedish elementary schools will be described and analysed, such as formal regulations, professional self-understanding, and the SSWs’ role in the interplay between professional domains involved in elementary school. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. The result reveals three main challenges for the School Social Worker (SSW): (1) To navigate in a pedagogic and medical arena within a multidisciplinary team, (2) To manage ambiguity without any formal regulations and unclear settings and leadership and finally, (3) To negotiate tasks at different levels, with a health promotional and preventive focus, where the SSW ends up, mainly in remedial work with individual children. The results also disclosed that SSWs hold a vague professional self-understanding position with a little formal mandate to perform their work.

Keywords: school social worker, multidisciplinary team, counselling, professional self-understanding, formal regulations

Procedia PDF Downloads 40
1480 A Design of Beam-Steerable Antenna Array for Use in Future Mobile Handsets

Authors: Naser Ojaroudi Parchin, Atta Ullah, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

A design of beam-steerable antenna array for the future cellular communication (5G) is presented. The proposed design contains eight elements of compact end-fire antennas arranged on the top edge of smartphone printed circuit board (PCB). Configuration of the antenna element consists of the conductive patterns on the top and bottom copper foil layers and a substrate layer with a via-hole. The simulated results including input-impedance and also fundamental radiation properties have been presented and discussed. The impedance bandwidth (S11 ≤ -10 dB) of the antenna spans from 17.5 to 21 GHz (more than 3 GHz bandwidth) with a resonance at 19 GHz. The antenna exhibits end-fire (directional) radiation beams with wide-angle scanning property and could be used for the future 5G beam-forming. Furthermore, the characteristics of the array design in the vicinity of user-hand are studied.

Keywords: beam-steering, end-fire radiation mode, mobile-phone antenna, phased array

Procedia PDF Downloads 122
1479 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 180
1478 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 345
1477 Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors

Authors: Waleed K. Saib, Abdulsalam M. Alhawsawi, Essam Banoqitah

Abstract:

The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs.

Keywords: PMT, radiation, radiation detection, scintillation detectors, silicon photomultiplier, spectrometer

Procedia PDF Downloads 130
1476 Employability Potential of Differently Abled in the Indian Apparel Industry

Authors: Gunjita Shami, Noopur Anand

Abstract:

The pilot run of 50 days was undertaken to test employability potential of people with visual and hearing & speech impairment. Various roles in an apparel manufacturing set up like spreading of fabric for cutting, folding, sealing and labeling cartons, pasting size barcode stickers on packed garments, removing tickets from the garments in the finishing stage were studied. Their performance was quantified basis timesheets for all the days and improvement per day was quantified. Their final day output was compared to that of the able-bodied worker. For example in the carton making activity on day one visually impaired worker was making one box every three minutes which improved to four boxes per minute on day 28 displaying 91.6% improvement compared or an improvement of 3.6% per day which was comparable to the able-bodied seasoned workers, who were making 5 boxes per minute. The performance of persons with hearing and speech impairment in the finishing department was 10% higher than that of able-bodied seasoned workers in the same process. Overall in all the activities the differently abled showed day to day improvement of 65% while able bodied displayed improvement of 52%. On the first day performance of able-bodied worker was 75% better than that of differently abled while on the 50th day it was only 20% better. Therefore the performance of persons with disabilities was found comparable to the able bodied person. The results, though on a small scale, showed a big promise of employment of persons with disability in the apparel industry. Armed with the promising result a full-scale study has been undertaken to identify the roles suitable for certain kind of disability in apparel production, work-aids required to assist the differently abled to improve performance and measures to be undertaken to make production floor 'friendlier' for them. The results have been discussed in this paper which opens doors for integrating differently abled into the world projected and assumed for only able-bodied.

Keywords: apparel sector, differently abled, employability, performance, work-aid

Procedia PDF Downloads 115
1475 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 110
1474 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector

Authors: Mayesha Tahsin, A.S. Mollah

Abstract:

Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.

Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient

Procedia PDF Downloads 119
1473 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 472
1472 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel

Procedia PDF Downloads 345
1471 Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry

Authors: Kanika Sharma, Shaila Bahl, Birendra Singh, Pratik Kumar, S. P. Lochab, A. Pandey

Abstract:

In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam.

Keywords: gamma radiation, ion beam, nanocrystalline, radiation dosimetry

Procedia PDF Downloads 157
1470 The MCNP Simulation of Prompt Gamma-Ray Neutron Activation Analysis at TRR-1/M1

Authors: S. Sangaroon, W. Ratanatongchai, S. Khaweerat, R. Picha, J. Channuie

Abstract:

The prompt gamma-ray neutron activation analysis system (PGNAA) has been constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/ Modification 1 (TRR-1/M1) since 1989. It was designed for the reactor operating power at 1.2 MW. The purpose of the system is for an elemental and isotopic analytical. In 2016, the PGNAA facility will be developed to reduce the leakage and background of neutrons and gamma radiation at the sample and detector position. In this work, the designed condition of these facilities is carried out based on the Monte Carlo method using MCNP5 computer code. The conditions with different modification materials, thicknesses and structure of the PGNAA facility, including gamma collimator and radiation shields of the detector, are simulated, and then the optimal structure parameters with a significantly improved performance of the facility are obtained.

Keywords: MCNP simulation, PGNAA, Thai research reactor (TRR-1/M1), radiation shielding

Procedia PDF Downloads 350
1469 Current Status of Ir-192 Brachytherapy in Bangladesh

Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar

Abstract:

Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.

Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas

Procedia PDF Downloads 400
1468 Leadership in the Era of AI: Growing Organizational Intelligence

Authors: Mark Salisbury

Abstract:

The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.

Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker

Procedia PDF Downloads 15
1467 Effect of UV Radiation to Change the Properties of the Composite PA+GF

Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz

Abstract:

The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors.

Keywords: composites with glass fibers, mechanical properties, polyamides, UV degradation

Procedia PDF Downloads 252
1466 Neutron Irradiated Austenitic Stainless Steels: An Applied Methodology for Nanoindentation and Transmission Electron Microscopy Studies

Authors: P. Bublíkova, P. Halodova, H. K. Namburi, J. Stodolna, J. Duchon, O. Libera

Abstract:

Neutron radiation-induced microstructural changes cause degradation of mechanical properties and the lifetime reduction of reactor internals during nuclear power plant operation. Investigating the effects of neutron irradiation on mechanical properties of the irradiated material (hardening, embrittlement) is challenging and time-consuming. Although the fast neutron spectrum has the major influence on microstructural properties, the thermal neutron effect is widely investigated owing to Irradiation-Assisted Stress Corrosion Cracking firstly observed in BWR stainless steels. In this study, 300-series austenitic stainless steels used as material for NPP's internals were examined after neutron irradiation at ~ 15 dpa. Although several nanoindentation experimental publications are available to determine the mechanical properties of ion irradiated materials, less is available on neutron irradiated materials at high dpa tested in hot-cells. In this work, we present particular methodology developed to determine the mechanical properties of neutron irradiated steels by nanoindentation technique. Furthermore, radiation-induced damage in the specimens was investigated by High Resolution - Transmission Electron Microscopy (HR-TEM) that showed the defect features, particularly Frank loops, cavity microstructure, radiation-induced precipitates and radiation-induced segregation. The results of nanoindentation measurements and associated nanoscale defect features showed the effect of irradiation-induced hardening. We also propose methodologies to optimized sample preparation for nanoindentation and microscotructural studies.

Keywords: nanoindentation, thermal neutrons, radiation hardening, transmission electron microscopy

Procedia PDF Downloads 131