Search results for: precision molding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1035

Search results for: precision molding

945 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers

Authors: R. M. S. Sachini Amararathne

Abstract:

This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.

Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer

Procedia PDF Downloads 72
944 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 52
943 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 51
942 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes

Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel

Abstract:

This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.

Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes

Procedia PDF Downloads 95
941 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: clustering, edges, feature points, landmark selection, X-means

Procedia PDF Downloads 247
940 Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles

Authors: Changgil Lee, Jooyoung Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information.

Keywords: bridge weigh-in-motion (BWIM) system, driving conditions, precision analysis model, the number of axle, the speed of vehicle

Procedia PDF Downloads 439
939 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware

Authors: Abbas Ebrahimi, Mohammad Zandsalimy

Abstract:

The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.

Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware

Procedia PDF Downloads 357
938 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 240
937 Development of an Automatic Control System for ex vivo Heart Perfusion

Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala

Abstract:

Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.

Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller

Procedia PDF Downloads 143
936 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 472
935 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 553
934 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 377
933 A Precision Medicine Approach to Sickle Cell Disease by Targeting the Adhesion Interactome

Authors: Anthara Vivek, Manisha Shukla, Mahesh Narayan, Prakash Narayan

Abstract:

Sickle cell disease disproportionately affects sub-Saharan Africa and certain tribal populaces in India and has consequently drawn little intertest from Pharma. In sickle cell patients, adhesion of erythrocytes or reticulocytes to one another and the vessel wall results in painful ischemic episodes with few, if any, effective treatments for vaso-occlusive crises. Identification of disease-associated adhesion markers on erythrocytes or reticulocytes might inform the use of more effective therapies against vaso-occlusive crises. Increased expression of one or more of bcam, itga4, cd44, cd47, rap1a, vcam1, or icam4 has been reported in sickle cell subjects. Using the miRNet ontology knowledgebase, peripheral blood interactomes were generated by seeding various combinations of the afore-referenced mRNA. These interactomes yielded an array of miR targets. As examples, targeting hsa-miR-155-5p can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 erythrocyte/reticulocyte adhesion interactome whereas targeting hsa-miRs-103a-3p or 107 can potentially neutralize adhesion in cells overexpressing icam4-cd47-bcam-itga4-cd36. AM3380 (MIRacle™) is an off-the shelf hsa-miR-155-5p agomiR that can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 signaling axis. Phlebotomy coupled with transcriptomics represents a potentially feasible and effective precision medicine strategy to mitigate vaso-occlusive crises in sickle cell patients.

Keywords: adhesion, interactome, precision, medicine

Procedia PDF Downloads 43
932 Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process

Authors: Yong-Jun Jeon, Hyung-Pil Park, Min-Jae Song, Baeg-Soon Cha

Abstract:

Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions.

Keywords: hot-stamping, formability, quenching, forming, press die, forming methods

Procedia PDF Downloads 436
931 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 85
930 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 122
929 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture

Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri

Abstract:

In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.

Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility

Procedia PDF Downloads 110
928 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 307
927 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 52
926 Wax Patterns for Integrally Cast Rotors/Stators of Aeroengine Gas Turbines

Authors: Pradyumna R., Sridhar S., A. Satyanarayana, Alok S. Chauhan, Baig M. A. H.

Abstract:

Modern turbine engines for aerospace applications need precision investment cast components such as integrally cast rotors and stators, for their hot end turbine stages. Traditionally, these turbines are used as starter engines. In recent times, such engines are also used for strategic missile applications. The rotor/stator castings consist of a central hub (shrouded in some designs) over which a number of aerofoil shaped blades are located. Since these components cannot be machined, investment casting is the only available route for manufacture and hence stringent dimensional aerospace quality has to be in-built in the casting process itself. In the process of investment casting, pattern generation by injection of wax into dedicated dies/moulds is the first critical step. Traditional approach deals in producing individual blades with hub/shroud features through wax injection and assembly of a set of such injected patterns onto a dedicated and precisely manufactured fixture to wax-weld and generate an integral wax pattern, a process known as the ‘segmental approach’. It is possible to design a single-injection die with retractable metallic inserts in the case of untwisted blades of stator patterns without the shroud. Such an approach is also possible for twisted blades of rotors with highly complex design of inter-blade inserts and retraction mechanisms. DMRL has for long established methods and procedures for the above to successfully supply precision castings for various defence related projects. In recent times, urea based soluble insert approach has also been successfully applied to overcome the need to design and manufacture a precision assembly fixture, leading to substantial reduction in component development times. Present paper deals in length various approaches tried and established at DMRL to generate precision wax patterns for aerospace quality turbine rotors and stators. In addition to this, the importance of simulation in solving issues related to wax injection is also touched upon.

Keywords: die/mold and fixtures, integral rotor/stator, investment casting, wax patterns, simulation

Procedia PDF Downloads 319
925 Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient

Authors: Guorong Sui, Xingwei Jia, Chenhui Yin, Xiumin Gao

Abstract:

In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length.

Keywords: camera calibration, aberration coefficient, vision measurement, focal length, mathematics model

Procedia PDF Downloads 330
924 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 128
923 The Effects of Big 6+6 Skill Training on Daily Living Skills for an Adolescent with Intellectual Disability

Authors: Luca Vascelli, Silvia Iacomini, Giada Gueli, Francesca Cavallini, Carlo Cavallini, Federica Berardo

Abstract:

The study was conducted to evaluate the effect of training on Big 6 + 6 motor skills to promote daily living skills. Precision teaching (PT) suggests that improved speed of the component behaviors can lead to better performance of composite skills. This study assessed the effects of the repeated timed practice of component motor skills on speed and accuracy of composite skills related to daily living skills. An 18 years old adolescent with intellectual disability participated. A pre post probe single-subject design was used. The results suggest that the participant was able to perform the component skills at his individual aims (endurance was assessed). The speed and accuracy of composite skills were increased; stability and retention were also measured for the composite skill after the training.

Keywords: big 6+6, daily living skills, intellectual disability, precision teaching

Procedia PDF Downloads 122
922 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: curing, epoxy insulation, numerical simulations, recycling

Procedia PDF Downloads 250
921 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 85
920 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 40
919 Automation of Pneumatic Seed Planter for System of Rice Intensification

Authors: Tukur Daiyabu Abdulkadir, Wan Ishak Wan Ismail, Muhammad Saufi Mohd Kassim

Abstract:

Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range.

Keywords: automation, calibration, pneumatic seed planter, system of rice intensification

Procedia PDF Downloads 612
918 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques

Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari

Abstract:

Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.

Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel

Procedia PDF Downloads 300
917 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 48
916 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-Water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide were add in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: non-water based slurry, LBO crystal, fixed abrasive polishing, surface roughness

Procedia PDF Downloads 429