Search results for: potential determining ions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13071

Search results for: potential determining ions

13041 Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water

Authors: Megha, Diksha, Seema Rani, Balwinder Kaur, Harminder Kaur

Abstract:

Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines.

Keywords: magnetic nanoparticles, heavy metal ions, electrochemical sensor, environmental water samples

Procedia PDF Downloads 42
13040 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions

Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu

Abstract:

With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.

Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 224
13039 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 554
13038 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste

Authors: L. Rozumová, J. Seidlerová

Abstract:

The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.

Keywords: blast furnace sludge, lead, zinc, sorption

Procedia PDF Downloads 275
13037 Removal of Metal Ions (II) Using a Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets

Authors: Laroussi Chaabane, Emmanuel Beyou, Amel El Ghali, Mohammed Hassen V. Baouab

Abstract:

The functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished followed by the grafting of bis(2-pyridylmethyl)amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) produced the martial [(Go-EDA-CAC)-BPED]. The physic-chemical properties of [(Go-EDA-CAC)-BPED] composites were investigated by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPs), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). Moreover, [(Go-EDA-CAC)-BPED] was used for removing M(II) (where M=Cu, Ni and Co) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature were investigated. More importantly, the [(Go-EDA-CAC)-BPED] adsorbent exhibited remarkable performance in capturing heavy metal ions from water. The maximum adsorption capacity values of Cu(II), Ni(II) and Co(II) on the [(GO-EDA-CAC)-BPED] at the pH of 7 is 3.05 mmol.g⁻¹, 3.25 mmol.g⁻¹ and 3.05 mmol.g⁻¹ respectively. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the three metal ions adsorption by [(Go-EDA-CAC)-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossensadsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)-BPED], their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of metal ions (Cu(II), Ni(II) and Co(II) from water solution. Based on the results obtained, we conclude that [(Go-EDA-CAC)-BPED] can be an effective and potential adsorbent for removing metal ions from an aqueous solution.

Keywords: graphene oxide, bis(2-pyridylmethyl)amino, adsorption kinetics, isotherms

Procedia PDF Downloads 105
13036 Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions

Authors: Silvana Caglieri

Abstract:

Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol.

Keywords: amides, amines, DFT, MP2

Procedia PDF Downloads 253
13035 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions

Authors: Nasibeh Azizi Khereshki

Abstract:

Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.

Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves

Procedia PDF Downloads 37
13034 Polymerization: An Alternative Technology for Heavy Metal Removal

Authors: M. S. Mahmoud

Abstract:

In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Keywords: adsorption, alginate polymer, isothermal models, equilibrium

Procedia PDF Downloads 425
13033 Adsorption of Lead and Zinc Ions Onto Chemical Activated Millet Husk: Equilibrium and Kinetics Studies

Authors: Hilary Rutto, Linda Sibali

Abstract:

In this study, the adsorption of lead and zinc ions from aqueous solutions by modified millet husk has been investigated. The effects of different parameters, such as pH, adsorbent dosage, concentration, temperature, and contact time, have been investigated. The results of the experiments showed that the adsorption of both metal ions increased by increasing pH values up to 11. Adsorption process was initially fast. The adsorption rate decreased then until it reached to equilibrium time of 120 min for both lead and zinc ions. The Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and thermodynamic models (Gibbs free energy) were used to determine the isotherm parameters associated with the adsorption process. The positive values of Gibbs free energy change indicated that reaction is not spontaneous. Experimental data were also evaluated in terms of kinetic characteristics of adsorption, and it was found that adsorption process for both metal ions followed pseudo-first order for zinc and pseudo-second-order for lead.

Keywords: zinc, lead, adsorption, millet husks

Procedia PDF Downloads 136
13032 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components

Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar

Abstract:

Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.

Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum

Procedia PDF Downloads 104
13031 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions

Authors: Nisha Dhariwal, Anupama Sharma

Abstract:

The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.

Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization

Procedia PDF Downloads 270
13030 Potential Energy Expectation Value for Lithium Excited State (1s2s3s)

Authors: Khalil H. Al-Bayati, G. Nasma, Hussein Ban H. Adel

Abstract:

The purpose of the present work is to calculate the expectation value of potential energy for different spin states (ααα ≡ βββ, αβα ≡ βαβ) and compare it with spin states (αββ, ααβ ) for lithium excited state (1s2s3s) and Li-like ions (Be+, B+2) using Hartree-Fock wave function by partitioning technique. The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ααα < ααβ < αββ < αβα.

Keywords: lithium excited state, potential energy, 1s2s3s, mathematical physics

Procedia PDF Downloads 458
13029 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 41
13028 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 109
13027 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 92
13026 Electron-Ion Recombination of N^{2+} and O^{3+} Ions

Authors: Shahin A. Abdel-Naby, Asad T. Hassan, Stuart Loch, Michael Fogle, Negil R. Badnell, Michael S. Pindzola

Abstract:

Accurate and reliable laboratory astrophysical data for electron-ion recombination are needed for plasma modeling. Dielectronic recombination (DR) rate coefficients are calculated for boron-like nitrogen and oxygen ions using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. The calculations are performed in intermediate coupling scheme associated with n = 0 (2  2) and n = 1 (2  3) core-excitations. Good agreements are found between the theoretically convoluted rate coefficients and the experimental measurements performed at CRYRING heavy-ion storage ring for both ions. Fitting coefficients for the rate coefficients are produced for these ions in the temperature range q2(102-107) K, where q is the ion charge before recombination.

Keywords: Atomic data, atomic processes, electron-ion collision, plasma

Procedia PDF Downloads 135
13025 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde

Authors: Pawan P. Kalbende, Anil B. Zade

Abstract:

A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.

Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake

Procedia PDF Downloads 272
13024 In-Vitro Stability of Aspergillus terreus Phytases in Relation to Different Physico-Chemical Factors

Authors: Qaiser Akram, Ahsan Naeem, Hafiz Muhammad Rizwan, Waqas Ahmad, Rubeena Yasmeen

Abstract:

Aspergillus has good secretory potential for phytases. Morphologically and microscopically identified Aspergillus terreus (A. terreus) (n=20) were screened for phytase production and non-toxicity. Phytases produced by non-toxigenic A. terreus under optimum conditions were quantified. Phytases of highest producer A. terreus were evaluated for stability after exposure to temperature (35, 55, 75 and 95ºC) and pH (2, 4, 6 and 8). Effect of metal ions (Fe⁺³, Ba⁺², Ca⁺², Cu⁺², Mg⁺², Mn⁺², K⁺¹ and Na⁺¹) was assessed on phytase activity. Log reduction in phytase activity was calculated. The highest activity units of phytase produced by A. terreus were 271.49 ± 8.14 phytase unit / mL (FTU/ mL). The lowest reduction in phytase activity was 50.20 ± 7.36 (18.5%) and 68.22 ± 10.3 FTU/mL (25.13%) at 35ºC and pH 6, respectively for 15 minutes. The highest reduction 259 ± 0.84 (95.5%) and 211.99 ± 4.39 FTU/mL (78.1%) was recorded at 95ºC for 60 minutes and pH 2.0 for 45 minutes exposure, respectively. All metal ions negatively affected phytase activity. Phytase activity was inhibited minimum (45.32 ± 28.54 FTU/mL, 16.69%) by K⁺¹(1 mM) and maximum (231.48 ± 3.68 FTU/mL, 80.8%) by Cu⁺² (10 mM). It was concluded that A. terreus phytase stability and activity was dependent on physio-chemical factors.

Keywords: stability, phytase, aspergillus terreus, physio-chemical factors and metal ions

Procedia PDF Downloads 241
13023 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride

Authors: A. Melouah, M. Diaf

Abstract:

The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.

Keywords: photoluminescence, Erbium, GaN, semiconductor materials

Procedia PDF Downloads 387
13022 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell

Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan

Abstract:

The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.

Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids

Procedia PDF Downloads 296
13021 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 284
13020 Wettability Alter of a Sandstone Rock by Graphene Oxide Adsorption

Authors: J. Gómez, J. Rodriguez, N. Santos, E. Mejía-Ospino

Abstract:

The wettability of the minerals present in a reservoir is a determining property in the recovery factor. One of the strategies proposed to increase recovery is based on altering the wettability of oil reservoir rocks. Approximately 60% of world crude oil reservoirs have sandstone-type host rocks; for that, it is very important to develop efficient methodologies to alter the wettability of these rocks. In this study, the alteration of the wettability of a sandstone rock due to graphene oxide (GO) adsorption was evaluated. The effect of GO concentration, salinity, Ca2+ ions, and pH on interfacial tension and contact angle was determined. The results show that GO adsorption induces significant changes in rock wettability. For high GO concentrations and low salinity, pH proved to be a determining factor in the alteration of wettability. Under certain conditions, surface wettability changes from highly oleophilic (144,8°) to intermediate oil wettability (91,2°).

Keywords: enhanced oil recovery, graphene oxide, interfacial tension, nanofluid, wettability

Procedia PDF Downloads 84
13019 A Luminescence Study of Bi³⁺ Codoping on Eu³⁺ Doped YPO₄

Authors: N. Yaiphaba, Elizabeth C. H.

Abstract:

YPO₄ nanoparticles codoped with Eu³⁺(5 at.%) and Bi³⁺(0, 1, 3, 5, 7, 10, 12, 15, 20 at.%) have been prepared in poly acrylic acid (PAA)-H₂O medium by hydrothermal synthesis by maintaining a temperature of 180oC. The crystalline structure of as-prepared and 500oC annealed samples transforms from tetragonal (JCPDS-11-0254) to hexagonal phase (JCPDS-42-0082) with increasing concentration of Bi³⁺ ions. However, 900oC annealed samples exhibit tetragonal structure. The crystallite size of the particles varies from 19-50 nm. The luminescence intensity increases at lower concentration of Bi³⁺ ions and then decreases with increasing Bi3+ ion concentrations. The luminescence intensity further increases on annealing at 500oC and 900oC. Further, 900oC annealed samples show sharp increase in luminescence intensity. Moreover, the samples follow bi-exponential decay indicating energy transfer from donor to the activator or non-uniform distribution of ions in the samples. The samples on excitation at 318 nm exhibit near white emission while at 394 nm excitation show emission in the red region. The as-prepared samples are redispersible and have potential applications in display devices, metal ion sensing, biological labelling, etc.

Keywords: charge transfer, sensitizer, activator, annealing

Procedia PDF Downloads 42
13018 Studies on Optimization of Batch Biosorption of Cr (VI) and Cu (II) from Wastewater Using Bacillus subtilis

Authors: Narasimhulu Korrapati

Abstract:

The objective of this present study is to optimize the process parameters for batch biosorption of Cr(VI) and Cu(II) ions by Bacillus subtilis using Response Surface Methodology (RSM). Batch biosorption studies were conducted under optimum pH, temperature, biomass concentration and contact time for the removal of Cr(VI) and Cu(II) ions using Bacillus subtilis. From the studies it is noticed that the maximum biosorption of Cr(VI) and Cu(II) was by Bacillus subtilis at optimum conditions of contact time of 30 minutes, pH of 4.0, biomass concentration of 2.0 mg/mL, the temperature of 32°C in batch biosorption studies. Predicted percent biosorption of the selected heavy metal ions by the design expert software is in agreement with experimental results of percent biosorption. The percent biosorption of Cr(VI) and Cu(II) in batch studies is 80% and 78.4%, respectively.

Keywords: heavy metal ions, response surface methodology, biosorption, wastewater

Procedia PDF Downloads 246
13017 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 19
13016 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 220
13015 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media

Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde

Abstract:

Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.

Keywords: adsorption, aqueous media, fishbone, kinetic study

Procedia PDF Downloads 98
13014 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal

Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia

Abstract:

Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.

Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building

Procedia PDF Downloads 221
13013 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia PDF Downloads 53
13012 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF, and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia PDF Downloads 130