Search results for: pesticide mixture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1508

Search results for: pesticide mixture

188 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task

Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli

Abstract:

Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.

Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making

Procedia PDF Downloads 226
187 Direct Phoenix Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Broths

Authors: Waad Al Saleemi, Badriya Al Adawi, Zaaima Al Jabri, Sahim Al Ghafri, Jalila Al Hadhramia

Abstract:

Objectives: Using standard lab methods, a positive blood culture requires a minimum of two days (two occasions of overnight incubation) to obtain a final identification (ID) and antimicrobial susceptibility results (AST) report. In this study, we aimed to evaluate the accuracy and precision of identification and antimicrobial susceptibility testing of an alternative method (direct method) that will reduce the turnaround time by 24 hours. This method involves the direct inoculation of positive blood culture broths into the Phoenix system using serum separation tubes (SST). Method: This prospective study included monomicrobial-positive blood cultures obtained from January 2022 to May 2023 in SQUH. Blood cultures containing a mixture of organisms, fungi, or anaerobic organisms were excluded from this study. The result of the new “direct method” under study was compared with the current “standard method” used in the lab. The accuracy and precision were evaluated for the ID and AST using Clinical and Laboratory Standards Institute (CLSI) recommendations. The categorical agreement, essential agreement, and the rates of very major errors (VME), major errors (ME), and minor errors (MIE) for both gram-negative and gram-positive bacteria were calculated. Passing criteria were set according to CLSI. Result: The results of ID and AST were available for a total of 158 isolates. Of 77 isolates of gram-negative bacteria, 71 (92%) were correctly identified at the species level. Of 70 isolates of gram-positive bacteria, 47(67%) isolates were correctly identified. For gram-negative bacteria, the essential agreement of the direct method was ≥92% when compared to the standard method, while the categorical agreement was ≥91% for all tested antibiotics. The precision of ID and AST were noted to be 100% for all tested isolates. For gram-positive bacteria, the essential agreement was >93%, while the categorical agreement was >92% for all tested antibiotics except moxifloxacin. Many antibiotics were noted to have an unacceptable higher rate of very major errors including penicillin, cotrimoxazole, clindamycin, ciprofloxacin, and moxifloxacin. However, no error was observed in the results of vancomycin, linezolid, and daptomycin. Conclusion: The direct method of ID and AST for positive blood cultures using SST is reliable for gram negative bacteria. It will significantly decrease the turnaround time and will facilitate antimicrobial stewardship.

Keywords: bloodstream infection, oman, direct ast, blood culture, rapid identification, antimicrobial susceptibility, phoenix, direct inoculation

Procedia PDF Downloads 25
186 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 136
185 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 134
184 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 207
183 The Path of Cotton-To-Clothing Value Chains to Development: A Mixed Methods Exploration of the Resuscitation of the Cotton-To-Clothing Value Chain in Post

Authors: Emma Van Schie

Abstract:

The purpose of this study is to use mixed methods research to create typologies of the performance of firms in the cotton-to-clothing value chain in Zimbabwe, and to use these typologies to achieve the objective of adding to the small pool of studies on Sub-Saharan African value chains performing in the context of economic liberalisation and achieving development. The uptake of economic liberalisation measures across Sub-Saharan Africa has led to the restructuring of many value chains. While this action has resulted in some African economies positively reintegrating into global commodity chains, it has also been deeply problematic for the development impacts of the majority of others. Over and above this, these nations have been placed at a disadvantage due to the fact that there is little scholarly and policy research on approaches for managing economic liberalisation and value chain development in the unique African context. As such, the central question facing these less successful cases is how they can integrate into the world economy whilst still fostering their development. This paper draws from quantitative questionnaires and qualitative interviews with 28 stakeholders in the cotton-to-clothing value chain in Zimbabwe. This paper examines the performance of firms in the value chain, and the subsequent local socio-economic development impacts that are affected by the revival of the cotton-to-clothing value chain following its collapse in the wake of Zimbabwe’s uptake of economic liberalisation measures. Firstly, the paper finds the relatively undocumented characteristics and structures of firms in the value chain in the post-economic liberalisation era. As well as this, it finds typologies of the status of firms as either being in operation, closed down, or being placed under judicial management and the common characteristics that these typologies hold. The key findings show how a mixture of macro and local level aspects, such as value chain governance and the management structure of a business, leads to the most successful typology that is able to add value to the chain in the context of economic liberalisation, and thus unlock its socioeconomic development potential. These typologies are used in making industry and policy recommendations on achieving this balance between the macro and the local level, as well as recommendations for further academic research for more typologies and models on the case of cotton value chains in Sub-Saharan Africa. In doing so, this study adds to the small collection of academic evidence and policy recommendations for the challenges that African nations face when trying to incorporate into global commodity chains in attempts to benefit from their associated socioeconomic development opportunities.

Keywords: cotton-to-clothing value chain, economic liberalisation, restructuring value chain, typologies of firms, value chain governance, Zimbabwe

Procedia PDF Downloads 140
182 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 355
181 Microplastic Storages in Riverbed Sediments: Experimental on the Settling Process and Its Deposits

Authors: Alvarez Barrantes, Robert Dorrell, Christopher Hackney, Anne Baar, Roberto Fernandez, Daniel Parsons

Abstract:

Microplastic particles entering fluvial environments are deposited with natural sediments. Their settling properties can change by the absorption or adsorption of contaminants, organic matter, and organisms. These deposits include positively, neutrally, and negatively buoyant particles. This study aims to understand how plastic particles of different densities interact with natural sediments as they settle and how they are stored within the sediment deposit. The results of this study contribute to a better understanding of the deposition of microplastic particles and associated pollution in rivers. A set of 48 experiments was designed to investigate the settling process of microplastic particles in freshwater. The experimental work describes the vertical variation of cohesive and/or non-cohesive sediment versus microplastic densities in deposited sediment. The experiment consisted of adding microplastic particles, sediment, and water in a waterproof carton tube of a height of 24 cm and a diameter of 5 cm. The plastic selected is positively, neutrally, and negatively buoyant. The sediments consist of sand and clay with four different concentrations. The mixture of materials was shaken until is thoroughly mixed and left to settle for 24 hours. After the settlement, the tubes were frozen at -20 °C to be able to cut them and measure the thickness of the deposits and analyze the sediment and plastic distribution. The most representative experiments were repeated in a glass tube of the same size; to analyse the influences of current flows and depositional process. Finally, the glass tube experiments were used to study organic materials adsorption in plastic, settling the sample for four months. Defined microplastic layers were identified as the density of the plastic change. Preliminary results show that most of the positive buoyancy particles floated, neutral buoyancy particles form a layer above the sediment and negative buoyancy particles mixed with the sediment. The vertical grain size distribution of the deposits was analysed to determine deposition variation with and without plastic. It is expected that the positively buoyant particles are trapped in the sediment by the currents flows and sink due to organic material adsorption. Finally, the experiments will explain how microplastic particles, including positively buoyant ones, are stored in natural sediment deposits.

Keywords: microplastic adsorption process, microplastic deposition in natural sediment, microplastic pollution in rivers, storages of positive buoyancy microplastic particles

Procedia PDF Downloads 167
180 Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid

Authors: Alexandra C. Blaga, Dan Caşcaval, Alexandra Tucaliuc, Madalina Poştaru, Anca I. Galaction

Abstract:

Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5.

Keywords: amino acids, di-(2-ethylhexyl) phosphoric acid, reactive extraction, selective extraction

Procedia PDF Downloads 399
179 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 377
178 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 421
177 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment

Authors: Siti Noor Syahirah Mohd Sabri

Abstract:

The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.

Keywords: CCUS, well integrity, co₂ storage, offshore

Procedia PDF Downloads 61
176 Mapping Actors in Sao Paulo's Urban Development Policies: Interests at Stake in the Challenge to Sustainability

Authors: A. G. Back

Abstract:

In the context of global climate change, extreme weather events are increasingly intense and frequent, challenging the adaptability of urban space. In this sense, urban planning is a relevant instrument for addressing, in a systemic manner, various sectoral policies capable of linking the urban agenda to the reduction of social and environmental risks. The Master Plan of the Municipality of Sao Paulo, 2014, presents innovations capable of promoting the transition to sustainability in the urban space. Among such innovations, the following stand out: i) promotion of density in the axes of mass transport involving mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies, including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, long-term implementation involves distributive conflicts and may change in different political, economic, and social contexts over time. Thus, the central objective of this paper is to identify which factors limit or support the implementation of these policies. That is, to map the challenges and interests of converging and/or divergent urban actors in the sustainable urban development agenda and what resources they mobilize to support or limit these actions in the city of Sao Paulo. Recent proposals to amend the urban zoning law undermine the implementation of the Master Plan guidelines. In this context, three interest groups with different views of the city come into dispute: the real estate market, upper middle class neighborhood associations ('not in my backyard' movements), and social housing rights movements. This paper surveys the different interests and visions of these groups taking into account their convergences, or not, with the principles of sustainable urban development. This approach seeks to fill a gap in the international literature on the causes that underpin or hinder the continued implementation of policies aimed at the transition to urban sustainability in the medium and long term.

Keywords: adaptation, ecosystem-based adaptation, interest groups, urban planning, urban transition to sustainability

Procedia PDF Downloads 95
175 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 148
174 Impact of ‎Foliar ‎Formulations of Macro and Micro Nutrients on ‎the ‎Tritrophic Association of Wheat Aphid ‎and Entomophagous Insects

Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat

Abstract:

In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat ‎aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association ‎among pest, natural enemies and host plant is highly affected by food resource ‎concentration and predator/parasitoid factor of any ecosystem. The present ‎study was conducted to estimate the effect of different dose levels of macro ‎and micronutrients on the aphid population and its entomophagous insect ‎on wheat and their tri-trophic association. The experiment was laid out in ‎RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of ‎the February till the maturity of the crop. Data regarding aphid population and ‎coccinellids counts were collected on weekly basis and subjected to analysis of ‎variance and mean comparison. The data revealed that aphid ‎population was at peak in the last week of March. Coccinellids population ‎increased side by side with aphid population and declined after second week of ‎April. Aphid parasitism was maximum 25% on recommended dose of Double and ‎Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves ‎components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in ‎plots treated with recommended double dose mixture of Double + Flasher and ‎Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves ‎respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application.‎ Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.

Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid

Procedia PDF Downloads 203
173 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems

Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke

Abstract:

Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.

Keywords: microplastics pollution, hydraulic, transport, accumulation

Procedia PDF Downloads 36
172 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows

Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman

Abstract:

The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.

Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer

Procedia PDF Downloads 101
171 Influence of Dietary Inclusion of Butyric Acids, Calcium Formate, Organic Acids and Its Salts on Rabbits Productive Performance, Carcass Traits and Meat Quality

Authors: V. Viliene, A. Raceviciute-Stupeliene, V. Sasyte, V. Slausgalvis, R. Gruzauskas, J. Al-Saifi

Abstract:

Animal nutritionists and scientists have searched for alternative measures to improve the production. One of such alternative is use of organic acids as feed additive in animal nutrition. The study was conducted to investigate the impact of butyric acids, calcium formate, organic acids, and its salts (BCOS) additives on rabbit’s productive performance, carcass traits and meat quality. The study was conducted with 14 Californian breed rabbits. The rabbits were assigned to two treatment groups (seven rabbits per each treatment group). The dietary treatments were 1) control diet, 2) diet supplemented with a mixture BCOS - 2 kg/t of feed. Growth performance characteristics (body weight, daily weight gain, daily feed intake, feed conversion ratio, mortality) were evaluated. Rabbits were slaughtered; carcass characteristics and meat quality were evaluated. Samples loin and hind leg meat were analysed to determine carcass characteristics, pH and colour measurements, cholesterol, and malonyldialdehyde (MDA) content in loin and hind leg meat. Differences between treatments were significant for body weight (1.30 vs. 1.36 kg; P<0.05), daily weight gain (16.60 vs. 17.85 g; P<0.05), and daily feed intake (78.25 vs. 80.58 g; P<0.05) for control and experimental group respectively for the entire experimental period (from 28–77 days old). No significant differences were found in feed conversion ratio and mortality. The feed additives insertion in the diets did not significantly influence the carcass yield or the proportions of the various carcass parts and organs. Differences between treatments were significant for pH value after 48h in loin (5.86 vs. 5.74; P<0.05), hind leg meat (6.62 vs. 6.65; P<0.05), more intense colour b* of loin (5.57 vs. 6.06; P<0.05), less intense colour a* (14.99 vs. 13.15; P<0.05) in hind leg meat. Cholesterol content in hind leg meat decreased by 17.67 mg/100g compared to control group (P<0.05). After storage for three months, MDA concentration decreased in loin and hind leg meat by 0.3 μmol/kg and 0.26 μmol/kg respectively compared to that of the control group (P<0.05). The results of this study suggest that BCOS could potentially be used in rabbit nutrition with consequent benefits on the rabbits’ productivity and nutritional quality of rabbit meat for consumers.

Keywords: butyric acids, Ca formate, meat quality, organic acids salts, rabbits, productivity

Procedia PDF Downloads 193
170 The Effect of Acute Consumption of a Nutritional Supplement Derived from Vegetable Extracts Rich in Nitrate on Athletic Performance

Authors: Giannis Arnaoutis, Dimitra Efthymiopoulou, Maria-Foivi Nikolopoulou, Yannis Manios

Abstract:

AIM: Nitrate-containing supplements have been used extensively as ergogenic in many sports. However, extract fractions from plant-based nutritional sources high in nitrate and their effect on athletic performance, has not been systematically investigated. The purpose of the present study was to examine the possible effect of acute consumption of a “smart mixture” from beetroot and rocket on exercise capacity. MATERIAL & METHODS: 12 healthy, nonsmoking, recreationally active, males (age: 25±4 years, % fat: 15.5±5.7, Fat Free Mass: 65.8±5.6 kg, VO2 max: 45.46.1 mL . kg -1 . min -1) participated in a double-blind, placebo-controlled trial study, in a randomized and counterbalanced order. Eligibility criteria for participation in this study included normal physical examination, and absence of any metabolic, cardiovascular, or renal disease. All participants completed a time to exhaustion cycling test at 75% of their maximum power output, twice. The subjects consumed either capsules containing 360 mg of nitrate in total or placebo capsules, in the morning, under fasted state. After 3h of passive recovery the performance test followed. Blood samples were collected upon arrival of the participants and 3 hours after the consumption of the corresponding capsules. Time until exhaustion, pre- and post-test lactate concentrations, and rate of perceived exertion for the same time points were assessed. RESULTS: Paired-sample t-test analysis found a significant difference in time to exhaustion between the trial with the nitrate consumption versus placebo [16.1±3.0 Vs 13.5±2.6 min, p=0.04] respectively. No significant differences were observed for the concentrations of lactic acid as well as for the values in the Borg scale between the two trials (p>0.05). CONCLUSIONS: Based on the results of the present study, it appears that a nutritional supplement derived from vegetable extracts rich in nitrate, improves athletic performance in recreationally active young males. However, the precise mechanism is not clear and future studies are needed. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T2EDK-00843).

Keywords: sports performance, ergogenic supplements, nitrate, extract fractions

Procedia PDF Downloads 43
169 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide

Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee

Abstract:

The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.

Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance

Procedia PDF Downloads 164
168 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 199
167 Rethinking Pathways to Shared Prosperity for Forest Communities: A Case Study of Nigerian REDD+ Readiness Project

Authors: U. Isyaku, C. Upton, J. Dickinson

Abstract:

Critical institutional approach for understanding pathways to shared prosperity among forest communities enabled questioning the underlying rational choice assumptions that have dominated traditional institutional thinking in natural resources management. Common pool resources framing assumes that communities as social groups share collective interests and values towards achieving greater development. Hence, policies related to natural resources management in the global South prioritise economic prosperity by focusing on how to maximise material benefits and improve the livelihood options of resource dependent communities. Recent trends in commodification and marketization of ecosystem goods and services into tradable natural capital and incentivising conservation are structured in this paradigm. Several researchers however, have problematized this emerging market-based model because it undermines cultural basis for protecting natural ecosystems. By exploring how forest people’s motivations for conservation differ within the context of reducing emissions from deforestation and forest degradation (REDD+) project in Nigeria, we aim to provide an alternative approach to conceptualising prosperity beyond the traditional economic thinking. Through in depth empirical work over seven months with five communities in Nigeria’s Cross River State, Q methodology was used to uncover communities’ perspectives and meanings of forest values that underpin contemporary and historic conservation practices, expected benefits, and willingness to participate in the REDD+ process. Our study finds six discourses about forest and conservation values that transcend wealth creation, poverty reduction and livelihoods. We argue that communities’ decisions about forest conservation consist of a complex mixture of economic, emotional, moral, and ecological justice concerns that constitute new meanings and dimensions of prosperity. Prosperity is thus reconfigured as having socio-cultural and psychological pathways that could be derived through place identity and attachment, connectedness to nature, family ties, and ability to participate in everyday social life. We therefore suggest that natural resources policy making and development interventions should consider institutional arrangements that also include the psycho-cultural dimensions of prosperity among diverse community groups.

Keywords: critical institutionalism, Q methodology, REDD+, shared prosperity

Procedia PDF Downloads 307
166 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 123
165 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 319
164 Extraction and Quantification of Peramine Present in Dalaca pallens, a Pest of Grassland in Southtern Chile

Authors: Leonardo Parra, Daniel Martínez, Jorge Pizarro, Fernando Ortega, Manuel Chacón-Fuentes, Andrés Quiroz

Abstract:

Control of Dalaca pallens or blackworms, one of the most important hypogeous pest in grassland in southern Chile, is based on the use of broad-spectrum insecticides such as organophosphates and pyrethroids. However, the rapid development of insecticide resistance in field populations of this insect and public concern over the environmental impact of these insecticides has resulted in the search for other control methods. Specifically, the use of endophyte fungi for controlling pest has emerged as an interesting and promising strategy. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces alkaloids where peramine is the main toxic substance against Listronotus bonariensis, the most important epigean pest of ryegrass. Nevertheless, the effect of peramina on others pest insects, such as D. pallens, to our knowledge has not been studied, and also its possible metabolization in the body of the larvae. Therefore, we addressed the following research question: Do larvae of D. pallens store peramine after consumption of ryegrass endophyte infected (E+)? For this, specimens of blackworms were fed with ryegrass plant of seven experimental lines and one commercial cultivar endophyte free (E-) sown at the Instituto de Investigaciones Agropecuarias Carillanca (Vilcún, Chile). Once the feeding period was over, ten larvae of each treatment were examined. Individuals were dissected, and their gut was removed to exclude any influence of remaining material. The rest of the larva's body was dried at 60°C by 24-48 h and ground into a fine powder using a mortar. 25 mg of dry powder was transferred to a microcentrifuge tube and extracted in 1 mL of a mixture of methanol:water:formic acid. Then, the samples were centrifuged at 16,000 rpm for 3 min, and the supernatant was colected and injected in the liquid chromatography of high resolution (HPLC). The results confirmed the presence of peramine in the larva's body of D. pallens. The insects that fed the experimental lines LQE-2 and LQE-6 were those where peramine was present in high proportion (0.205 and 0.199 ppm, respectively); while LQE-7 and LQE-3 obtained the lowest concentrations of the alkaloid (0.047 and 0.053 ppm, respectively). Peramine was not detected in the insects when the control cultivar Jumbo (E-) was tested. These results evidenced the storage and metabolism of peramine during consumption of the larvae. However, the effect of this alkaloid present in 'future ryegrass cultivars' (LQE-2 and LQE-6) on the performance and survival of blackworms must be studied and confirmed experimentally.

Keywords: blackworms, HPLC, alkaloid, pest

Procedia PDF Downloads 277
163 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 500
162 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure

Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto

Abstract:

Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.

Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation

Procedia PDF Downloads 513
161 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 278
160 Development of Extruded Prawn Snack Using Prawn Flavor Powder from Prawn Head Waste

Authors: S. K. Sharma, P. Kumar, Pratibha Singh

Abstract:

Consumption of SNACK is growing its popularity every day in India and a broad range of these items are available in the market. The end user interest in ready-to-eat snack foods is constantly growing mainly due to their ease, ample accessibility, appearance, taste and texture. Food extrusion has been practiced for over fifty years. Its role was initially limited to mixing and forming cereal products. Although thermoplastic extrusion has been successful for starch products, extrusion of proteins has achieved only limited success. In this study, value-added extruded prawn product was prepared with prawn flavor powder and corn flour using a twin-screw extruder. Prawn flavor concentrates prepared from fresh prawn head (Solenocera indica). To prepare flavor concentrate prawn head washed with potable water and blended with 200ml 3% salt solution per 250gm head weight to make the slurry, which was further put in muslin cloth and boiled with salt and starch solution for 10 minutes, cooled to room temperature and filtered, starch added to the filtrate and made into powder in an electrically drier at 43-450c. The mixture was passed through the twin-screw extruder (co-rotating twin screw extruder - basic technology Pvt. Ltd., Kolkata) which was operated at a particular speed of rotation, die diameter, temperature, moisture, and fish powder concentration. Many trial runs were conducted to set up the process variables. The different extrudes produced after each trail were examined for the quality and characteristics. The effect of temperature, moisture, screw speed, protein, fat, ash and thiobarbituric acid (TBA) number and expansion ratio were studied. In all the four trials, moisture, temperature, speed and die diameter used was 20%, 100°C, 350 rpm and 4 mm, respectively. The ratio of prawn powder and cornstarch used in different trials ranged between 2:98 and 10:90. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing, i.e. a- 12-pm polyester, 12-pm metalized polyester, 60-11m polyethylene (metalized polyester a), b- 12-11m metalized polyester, 37.5-11m polyethylene (metalized polyester b), c- 12-11m polyethylene, 9-11m aluminium foil, 37.5-11m polyethylene (aluminium foil). The organoleptic analysis was carried out on a 9-point hedonic scale. The study revealed that the fried product packed in aluminum foil under nitrogen flushing would remain acceptable for more than three months.

Keywords: extruded product, prawn flavor, twin-screw extruder, storage characteristics

Procedia PDF Downloads 118
159 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments

Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy

Abstract:

Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.

Keywords: compressive strength, dredged sediments, ecological binder, geopolymers

Procedia PDF Downloads 79