Search results for: peak demands
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2510

Search results for: peak demands

50 Seismo-Volcanic Hazards in Great Ararat Region, Eastern Turkey

Authors: Mehmet Salih Bayraktutan, Emre Tokmak

Abstract:

Great Ararat Volcano is the highest peak in South Caucasus Volcanic Plateau. Uplifted by Quaternary basaltic pyroclastic and lava flows. Numerous volcanic cones formed along with the tensional fractures under N-S compressional geodynamic framework. Basaltic flows have fresh surface morphology give ages of 650-680 K years. Hyperstene andesites constitute a major mass of Greater Ararat gives ages of 450-490 K years. During the early eruption period, predominately pyroclastics, cinder, lapilly-ash volcanic bombs were extruded. Third-period eruptions dominantly basaltic lava flows. Andesitic domes aligned along with the NW-SE striking fractures. Hyalo basalt and hornblende basaltic lavas are the latest lava eruptions. Hyalo-basaltic eruptions occurred via parasitic cones distributed far from the center. Parasitic cones are most common at the foot of Mount covered by recent NW flowing basaltic lava. Some of the cones are distributed on a circular pattern. One of the most hazardous disasters recorded in Eastern Turkey was July 1840 Cehennem Canyon Flood. Volcanic activities seismically triggered resulted in melting of glacier cap, mixed with ash and pyroclastics, flowed down along the Valley. Mud rich Slush urged catastrophically northwards, crossed Ars River and damned Surmeli Basin, forming reservoir behind. Ararat volcanoes are located on NW-SE striking Agri Fault Zone. Right lateral extensional faults, along which a series of andesitic domes formed. Great Ararat, in general strato-type volcano. This huge structure, developed in two main parts with different topographic and morphological features. The large lower base covers a widespread area composed of predominantly pyroclastics, ignimbrites, aglomerates, thick pumice, perlite deposits. Approximately 1/3 of the Crest by height formed of this basement. And 2/3 of the upper part with a conic- shape composed of basaltic lava flows. The active tectonic structure consists of three different patterns. The first network is radially distributed fractures formed during the last stage of lava eruptions. The second group of active faults striking in NW direction, and continue in N30W strike, formes Igdir Fault Zone. The third set of faults, dipping in the northwest with 75-80 degrees, strikes NE- SW across the whole Mount, slicing Great Ararat into four segments. In the upper stage of Cehennem Canyon, this set cutting volcanic layers caused numerous Waterfalls, Rock Avalanches, Mud Flows along the canyon, threatens the Village of Yanidogan, at the apex of flood deposits. Great Ararat Region has high seismo-tectonic risk and by occurrence frequency and magnitude, which caused in history caused heavy disasters, at villages surrounding the Ararat Basement.

Keywords: Eastern Turkey, geohazard, great ararat volcano, seismo-tectonic features

Procedia PDF Downloads 159
49 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 5
48 About the State of Students’ Career Guidance in the Conditions of Inclusive Education in the Republic of Kazakhstan

Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip

Abstract:

Over the years of independence, Kazakhstan has not only ratified international documents regulating the rights of children to Inclusive education, but also developed its own inclusive educational policy. Along with this, the state pays particular attention to high school students' preparedness for professional self-determination. However, a number of problematic issues in this field have been revealed, such as the lack of systemic mechanisms coordinating stakeholders’ actions in preparing schoolchildren for a conscious choice of in-demand profession, meeting their individual capabilities and special educational needs (SEN). The analysis of the state’s current situation indicates school graduates’ adaptation to the labor market does not meet existing demands of the society. According to the Ministry of Labor and Social Protection of the Population of the Republic of Kazakhstan, about 70 % of Kazakhstani school graduates find themselves difficult to choose a profession, 87 % of schoolchildren make their career choice under the influence of parents and school teachers, 90 % of schoolchildren and their parents have no idea about the most popular professions on the market. The results of the study conducted by KorlanSyzdykova in 2016 indicated the urgent need of Kazakhstani school graduates in obtaining extensive information about in- demand professions and receiving professional assistance in choosing a profession in accordance with their individual skills, abilities, and preferences. The results of the survey, conducted by Information and Analytical Center among heads of colleges in 2020, showed that despite significant steps in creating conditions for students with SEN, they face challenges in studying because of poor career guidance provided to them in schools. The results of the study, conducted by the Center for Inclusive Education of the National Academy of Education named after Y. Altynsarin in the state’s general education schools in 2021, demonstrated the lack of career guidance, pedagogical and psychological support for children with SEN. To investigate these issues, the further study was conducted to examine the state of students’ career guidance and socialization, taking into account their SEN. The hypothesis of this study proposed that to prepare school graduates for a conscious career choice, school teachers and specialists need to develop their competencies in early identification of students' interests, inclinations, SEN and ensure necessary support for them. The state’s 5 regions were involved in the study according to the geographical location. The triangulation approach was utilized to ensure the credibility and validity of research findings, including both theoretical (analysis of existing statistical data, legal documents, results of previous research) and empirical (school survey for students, interviews with parents, teachers, representatives of school administration) methods. The data were analyzed independently and compared to each other. The survey included questions related to provision of pedagogical support for school students in making their career choice. Ethical principles were observed in the process of developing the methodology, collecting, analyzing the data and distributing the results. Based on the results, methodological recommendations on students’ career guidance for school teachers and specialists were developed, taking into account the former’s individual capabilities and SEN.

Keywords: career guidance, children with special educational needs, inclusive education, Kazakhstan

Procedia PDF Downloads 127
47 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities

Authors: Shoba Rathilal

Abstract:

High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.

Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development

Procedia PDF Downloads 49
46 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 13
45 Ethnic Tourism and Real Estate Development: A Case of Yiren Ancient Town, China

Authors: Li Yang

Abstract:

Tourism is employed by many countries to facilitate socioeconomic development and to assist in the heritage preservation. An “ethnic culture boom” is currently driving the tourism industry in China. Ethnic minorities, commonly portrayed as primitive, colorful and exotic, have become a big tourist draw. Many cultural attractions have been built throughout China to meet the demands of domestic tourists. Sacred cultural heritage sites have been rehabilitated as a major component of ethnic tourism. The purpose of this study is to examine the interconnected consequences of tourism development and tourism-related leisure property development and, and to discuss, in a broader context, issues and considerations that are pertinent to the management and development of ethnic attractions. The role of real estate in tourism development and its sociocultural consequences are explored. An empirical research was conducted in Yiren Ancient Town (literally, "Ancient Town of Yi People") in Chuxiong City, Yunnan Province, China. Multiple research methods, including in-depth interviews, informal discussions, on-site observations, and secondary data review were employed to measure residents and tourism decision-makers’ perceptions of ethnic tourism and to explore the impacts of tourism on local community. Key informants from government officials, tourism developers and local communities were interviewed individually to gather what they think about benefits and costs of tourism, and what their concerns about and hopes for tourism development are. Yiren Ancient Town was constructed in classical Yi architecture style featuring tranquil garden scenery. Commercial streets, entertainment complexes, and accommodation facilities occupied the center of the town, creating culturally distinctive and visually stimulating places for tourists. A variety of activities are presented to visitors, including walking tours of the town, staged dance shows, musical performances, ethnic festivals and ceremonies, tasting minority food and wedding shows. This study reveals that tourism real estate has transformed the town from a traditional neighborhood into diverse real estate landscapes. Ethnic architecture, costumes, festivals and folk culture have been represented, altered and reinvented through the tourist gaze and mechanisms of cultural production. Tourism is now a new economic driver of the community providing opportunities for the creation of small businesses. There was a general appreciation in the community that tourism has created many employment opportunities, especially for self-employment. However, profit-seeking is a primary motivation for the government, developers, businesses, and other actors involved in the tourism development process. As the town has attracted an increasing number of visitors, commercialization and business competition are intense in the town. Many residents complained about elevated land prices, making the town and the surroundings comparatively high-value locales. Local community is also concerned about the decline of traditional ethnic culture and an erosion of the sense of identity and place. A balance is difficult to maintain between protection and development. The preservation of ethnic culture and heritage should be enhanced if long-term sustainable development of tourism is to occur and the loss of ethnic identities is to be avoided.

Keywords: ancient town, ethnic tourism, local community, real estate, China

Procedia PDF Downloads 256
44 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production

Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna

Abstract:

Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.

Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement

Procedia PDF Downloads 29
43 Drones, Rebels and Bombs: Explaining the Role of Private Security and Expertise in a Post-piratical Indian Ocean

Authors: Jessica Kate Simonds

Abstract:

The last successful hijacking perpetrated by Somali pirates in 2012 represented a critical turning point for the identity and brand of Indian Ocean (IO) insecurity, coined in this paper as the era of the post-piratical. This paper explores the broadening of the PMSC business model to account and contribute to the design of a new IO security environment that prioritises foreign and insurgency drone activity and Houthi rebel operations as the main threat to merchant shipping in the post-2012 era. This study is situated within a longer history of analysing maritime insecurity and also contributes a bespoke conceptual framework that understands the sea as a space that is produced and reproduced relative to existing and emerging threats to merchant shipping based on bespoke models of information sharing and intelligence acquisition. This paper also makes a prominent empirical contribution by drawing on a post-positivist methodology, data drawn from original semi-structured interviews with senior maritime insurers and active merchant seafarers that is triangulated with industry-produced guidance such as the BMP series as primary data sources. Each set is analysed through qualitative discourse and content analysis and supported by the quantitative data sets provided by the IMB Piracy Reporting center and intelligence networks. This analysis reveals that mechanisms such as the IGP&I Maritime Security Committee and intelligence divisions of PMSC’s have driven the exchanges of knowledge between land and sea and thus the reproduction of the maritime security environment through new regulations and guidance to account dones, rebels and bombs as the key challenges in the IO, beyond piracy. A contribution of this paper is the argument that experts who may not be in the highest-profile jobs are the architects of maritime insecurity based on their detailed knowledge and connections to vessels in transit. This paper shares the original insights of those who have served in critical decision making spaces to demonstrate that the development and refinement of industry produced deterrence guidance that has been accredited to the mitigation of piracy, have shaped new editions such as BMP 5 that now serve to frame a new security environment that prioritises the mitigation of risks from drones and WBEID’s from both state and insurgency risk groups. By highlighting the experiences and perspectives of key players on both land and at sea, the key finding of this paper is outlining that as pirates experienced a financial boom by profiteering from their bespoke business model during the peak of successful hijackings, the private security market encountered a similar level of financial success and guaranteed risk environment in which to prospect business. Thus, the reproduction of the Indian Ocean as a maritime security environment reflects a new found purpose for PMSC’s as part of the broader conglomerate of maritime insurers, regulators, shipowners and managers who continue to redirect the security consciousness and IO brand of insecurity.

Keywords: maritime security, private security, risk intelligence, political geography, international relations, political economy, maritime law, security studies

Procedia PDF Downloads 156
42 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 110
41 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 45
40 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 135
39 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 423
38 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 69
37 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan

Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami

Abstract:

In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.

Keywords: integrated solid waste management, waste segregation, waste bank, community development

Procedia PDF Downloads 121
36 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks

Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy

Abstract:

Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.

Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system

Procedia PDF Downloads 143
35 Empowering Women Entrepreneurs in Rural India through Developing Online Communities of Purpose Using Social Technologies

Authors: Jayanta Basak, Somprakash Bandyopadhyay, Parama Bhaumik, Siuli Roy

Abstract:

To solve the life and livelihood related problems of socially and economically backward rural women in India, several Women Self-Help Groups (WSHG) are formed in Indian villages. WSHGs are micro-communities (with 10-to 15 members) within a village community. WSHGs have been conceived not just to promote savings and provide credit, but also to act as a vehicle of change through the creation of women micro-entrepreneurs at the village level. However, in spite of huge investment and volume of people involved in the whole process, the success is still limited. Most of these entrepreneurial activities happen in small household workspaces where sales are limited to the inconsistent and unpredictable local markets. As a result, these entrepreneurs are perennially trapped in the vicious cycle of low risk taking ability, low investment capacity, low productivity, weak market linkages and low revenue. Market separation including customer-producer separation is one of the key problems in this domain. Researchers suggest that there are four types of market separation: (i) spatial, (ii) financial, (iii) temporal, and (iv) informational, which in turn impacts the nature of markets and marketing. In this context, a large group of intermediaries (the 'middleman') plays important role in effectively reducing the factors that separate markets by utilizing the resource of rural entrepreneurs, their products and thus, accelerate market development. The rural entrepreneurs are heavily dependent on these middlemen for marketing of their products and these middlemen exploit rural entrepreneurs by creating a huge informational separation between the rural producers and end-consumers in the market and thus hiding the profit margins. The objective of this study is to develop a transparent, online communities of purpose among rural and urban entrepreneurs using internet and web 2.0 technologies in order to decrease market separation and improve mutual awareness of available and potential products and market demands. Communities of purpose are groups of people who have an ability to influence, can share knowledge and learn from others, and be committed to achieving a common purpose. In this study, a cluster of SHG women located in a village 'Kandi' of West Bengal, India has been studied closely for six months. These women are primarily engaged in producing garments, soft toys, fabric painting on clothes, etc. These women were equipped with internet-enabled smart-phones where they can use chat applications in local language and common social networking websites like Facebook, Instagram, etc. A few handicraft experts and micro-entrepreneurs from the city (the 'seed') were included in their mobile messaging app group that enables the creation of a 'community of purpose' in order to share thoughts and ideas on product designs, market trends, and practices, and thus decrease the rural-urban market separation. After six months of regular group interaction in mobile messaging app among these rural-urban community members, it is observed that SHG women are empowered now to share their product images, design ideas, showcase, and promote their products in global marketplace using some common social networking websites through which they can also enhance and augment their community of purpose.

Keywords: communities of purpose, market separation, self-help group, social technologies

Procedia PDF Downloads 228
34 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 198
33 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 267
32 The Development, Use and Imapct of an Open Source, Web-Based, Video-Annoation Tool to Provide Job-Embedded Professional Development for Educators: The Coaching Companion

Authors: Gail Joseph

Abstract:

In the United States, to advance the quality and education requirements of PreK teachers, there are concerns regarding barriers for existing early childhood educators to access formal degrees and ongoing professional development. Barriers exist related to affordability and access. Affordability is a key factor that impacts teachers access to degree programs. The lack of financial resources makes it difficult for many qualified candidates to begin, and complete, degree programs. Even if funding was not an issue, accessibility remains a pressing issue in higher education. Some common barriers include geography, long work hours, lack of professional community, childcare, and clear articulation agreements. Greater flexibility is needed to allow all early childhood professionals to pursue college coursework that takes into consideration the many competing demands on their schedules. For these busy professionals, it is particularly important that professional development opportunities are available “on demand” and are seen as relevant to their work. Courses that are available during non-traditional hours make attendance more accessible, and professional development that is relevant to what they need to know and be able to do to be effective in their current positions increase access to and the impact of ongoing professional education. EarlyEdU at the University of Washington provides institutes of higher education and state professional development systems with free comprehensive, competency based college courses based on the latest science of how to optimize child learning and outcomes across developmental domains. The coursework embeds an intentional teaching framework which requires teachers to know what to do in the moment, see effective teaching in themselves and others, enact these practices in the classroom, reflect on what works and what does not, and improve with thoughtful practices. Reinforcing the Intentional Teaching Framework in EarlyEdU courses is the Coaching Companion, an open source, web-based video annotation learning tool that supports coaching in higher education by enabling students to view and refine their teaching practices. The tool is integrated throughout EarlyEdU courses. With the Coaching Companion, students see upload teaching interactions on video and then reflect on the degree to which they incorporate evidence-based practices. Coaching Companion eliminates the traditional separation of theory and practice in college-based teacher preparation. Together, the Intentional Teaching Framework and the Coaching Companion transform the course instructor into a job-embedded coach. The instructor watches student interactions with children on video using the Coaching Companion and looks specifically for interactions defined in course assignments, readings, and lectures. Based on these observations, the instructor offers feedback and proposes next steps. Developed on federal and philanthropic funds, all EarlyEdU courses and the Coaching Companion are available for free to 2= and 4-year colleges and universities with early childhood degrees, as well as to state early learning and education departments to increase access to high quality professional development. We studied the impact of the Coaching Companion in two courses and demonstrated a significant increase in the quality of teacher-child interactions as measured by the PreK CLASS quality teaching assessment. Implications are discussed related to policy and practice.

Keywords: education technology, distance education, early childhood education, professional development

Procedia PDF Downloads 99
31 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study

Authors: Kaaryn Cater

Abstract:

People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.

Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity

Procedia PDF Downloads 41
30 Impact of Increased Radiology Staffing on After-Hours Radiology Reporting Efficiency and Quality

Authors: Peregrine James Dalziel, Philip Vu Tran

Abstract:

Objective / Introduction: Demand for radiology services from Emergency Departments (ED) continues to increase with greater demands placed on radiology staff providing reports for the management of complex cases. Queuing theory indicates that wide variability of process time with the random nature of request arrival increases the probability of significant queues. This can lead to delays in the time-to-availability of radiology reports (TTA-RR) and potentially impaired ED patient flow. In addition, greater “cognitive workload” of greater volume may lead to reduced productivity and increased errors. We sought to quantify the potential ED flow improvements obtainable from increased radiology providers serving 3 public hospitals in Melbourne Australia. We sought to assess the potential productivity gains, quality improvement and the cost-effectiveness of increased labor inputs. Methods & Materials: The Western Health Medical Imaging Department moved from single resident coverage on weekend days 8:30 am-10:30 pm to a limited period of 2 resident coverage 1 pm-6 pm on both weekend days. The TTA-RR for weekend CT scans was calculated from the PACs database for the 8 month period symmetrically around the date of staffing change. A multivariate linear regression model was developed to isolate the improvement in TTA-RR, between the two 4-months periods. Daily and hourly scan volume at the time of each CT scan was calculated to assess the impact of varying department workload. To assess any improvement in report quality/errors a random sample of 200 studies was assessed to compare the average number of clinically significant over-read addendums to reports between the 2 periods. Cost-effectiveness was assessed by comparing the marginal cost of additional staffing against a conservative estimate of the economic benefit of improved ED patient throughput using the Australian national insurance rebate for private ED attendance as a revenue proxy. Results: The primary resident on call and the type of scan accounted for most of the explained variability in time to report availability (R2=0.29). Increasing daily volume and hourly volume was associated with increased TTA-RR (1.5m (p<0.01) and 4.8m (p<0.01) respectively per additional scan ordered within each time frame. Reports were available 25.9 minutes sooner on average in the 4 months post-implementation of double coverage (p<0.01) with additional 23.6 minutes improvement when 2 residents were on-site concomitantly (p<0.01). The aggregate average improvement in TTA-RR was 24.8 hours per weekend day This represents the increased decision-making time available to ED physicians and potential improvement in ED bed utilisation. 5% of reports from the intervention period contained clinically significant addendums vs 7% in the single resident period but this was not statistically significant (p=0.7). The marginal cost was less than the anticipated economic benefit based assuming a 50% capture of improved TTA-RR inpatient disposition and using the lowest available national insurance rebate as a proxy for economic benefit. Conclusion: TTA-RR improved significantly during the period of increased staff availability, both during the specific period of increased staffing and throughout the day. Increased labor utilisation is cost-effective compared with the potential improved productivity for ED cases requiring CT imaging.

Keywords: workflow, quality, administration, CT, staffing

Procedia PDF Downloads 87
29 Intelligent Materials and Functional Aspects of Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.

Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures

Procedia PDF Downloads 406
28 Unpacking the Spatial Outcomes of Public Transportation in a Developing Country Context: The Case of Johannesburg

Authors: Adedayo B. Adegbaju, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The unique urban contexts that emanated from the apartheid history of South Africa informed the transport landscape of the City of Johannesburg. Apartheid‘s divisive spatial planning and land use management policies promoted sprawling and separated workers from job opportunities. This was further exacerbated by poor funding of public transport and road designs that encouraged the use of private cars. However, the democratization of the country in 1994 and the hosting of the 2010 FIFA World Cup provided a new impetus to the city’s public transport-oriented urban planning inputs. At the same time, the state’s new approach to policy formulations that entails the provision of public transport as one of the tools to end years of marginalization and inequalities soon began to largely reflect in planning decisions of other spheres of government. The Rea Vaya BRT and the Gautrain were respectively implemented by the municipal and provincial governments to demonstrate strong political will and commitment to the new policy direction. While the Gautrain was implemented to facilitate elite movement within Gauteng and to crowd investments and economic growths around station nodes, the BRT was provided for previously marginalized public transport users to provide a sustainable alternative to the dominant minibus taxi. The aim of this research is to evaluate the spatial impacts of the Gautrain and Rea Vaya BRT on the City of Johannesburg and to inform future outcomes by determining the existing potentials. By using the case study approach with a focus on the BRT and fast rail in a metropolitan context, the triangulation research method, which combines various data collection methods, was used to determine the research outcomes. The use of interviews, questionnaires, field observation, and databases such as REX, Quantec, StatsSA, GCRO observatory, national and provincial household travel surveys, and the quality of life surveys provided the basis for data collection. The research concludes that the Gautrain has demonstrated that viable alternatives to the private car can be provided, with its satisfactory feedbacks from users; while some of its station nodes (Sandton, Rosebank) have shown promises of transit-oriented development, one of the project‘s key objectives. The other stations have been unable to stimulate growth due to reasons like non-implementation of their urban design frameworks and lack of public sector investment required to attract private investors. The Rea Vaya BRT continues to be expanded in spite of both its inability to induce modal change and its low ridership figures. The research identifies factors like the low peak to base ratio, pricing, and the city‘s disjointed urban fabric as some of the reasons for its below-average performance. By drawing from the highlights and limitations, the study recommends that public transport provision should be institutionally integrated across and within spheres of government. Similarly, harmonization of the funding structure, better understanding of users’ needs, and travel patterns, underlined with continuity of policy direction and objectives, will equally promote optimal outcomes.

Keywords: bus rapid transit, Gautrain, Rea Vaya, sustainable transport, spatial and transport planning, transit oriented development

Procedia PDF Downloads 88
27 From Modelled Design to Reality through Material and Machinery Lab and Field Tests: Porous Concrete Carparks at the Wanda Metropolitano Stadium in Madrid

Authors: Manuel de Pazos-Liano, Manuel Cifuentes-Antonio, Juan Fisac-Gozalo, Sara Perales-Momparler, Carlos Martinez-Montero

Abstract:

The first-ever game in the Wanda Metropolitano Stadium, the new home of the Club Atletico de Madrid, was played on September 16, 2017, thanks to the work of a multidisciplinary team that made it possible to combine urban development with sustainability goals. The new football ground sits on a 1.2 km² land owned by the city of Madrid. Its construction has dramatically increased the sealed area of the site (transforming the runoff coefficient from 0.35 to 0.9), and the surrounding sewer network has no capacity for that extra flow. As an alternative to enlarge the existing 2.5 m diameter pipes, it was decided to detain runoff on site by means of an integrated and durable infrastructure that would not blow up the construction cost nor represent a burden on the municipality’s maintenance tasks. Instead of the more conventional option of building a large concrete detention tank, the decision was taken on the use of pervious pavement on the 3013 car parking spaces for sub-surface water storage, a solution aligned with the city water ordinance and the Madrid + Natural project. Making the idea a reality, in only five months and during the summer season (which forced to pour the porous concrete only overnight), was a challenge never faced before in Spain, that required of innovation both at the material as well as the machinery side. The process consisted on: a) defining the characteristics required for the porous concrete (compressive strength of 15 N/mm2 and 20% voids); b) testing of different porous concrete dosages at the construction company laboratory; c) stablishing the cross section in order to provide structural strength and sufficient water detention capacity (20 cm porous concrete over a 5 cm 5/10 gravel, that sits on a 50 cm coarse 40/50 aggregate sub-base separated by a virgin fiber polypropylene geotextile fabric); d) hydraulic computer modelling (using the Full Hydrograph Method based on the Wallingford Procedure) to estimate design peak flows decrease (an average of 69% at the three car parking lots); e) use of a variety of machinery for the application of the porous concrete to achieve both structural strength and permeable surface (including an inverse rotating rolling imported from USA, and the so-called CMI, a sliding concrete paver used in the construction of motorways with rigid pavements); f) full-scale pilots and final construction testing by an accredited laboratory (pavement compressive strength average value of 15 N/mm2 and 0,0032 m/s permeability). The continuous testing and innovating construction process explained in detail within this article, allowed for a growing performance with time, finally proving the use of the CMI valid also for large porous car park applications. All this process resulted in a successful story that converts the Wanda Metropolitano Stadium into a great demonstration site that will help the application of the Spanish Royal Decree 638/2016 (it also counts with rainwater harvesting for grass irrigation).

Keywords: construction machinery, permeable carpark, porous concrete, SUDS, sustainable develpoment

Procedia PDF Downloads 117
26 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.

Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning

Procedia PDF Downloads 158
25 Towards Achieving Total Decent Work: Occupational Safety and Health Issues, Problems and Concerns of Filipino Domestic Workers

Authors: Ronahlee Asuncion

Abstract:

The nature of their work and employment relationship make domestic workers easy prey to abuse, maltreatment, and exploitation. Considering their plight, this research was conceptualized and examined the: a) level of awareness of Filipino domestic workers on occupational safety and health (OSH); b) their issues/problems/concerns on OSH; c) their intervention strategies at work to address OSH related issues/problems/concerns; d) issues/problems/concerns of government, employers, and non-government organizations with regard to implementation of OSH to Filipino domestic workers; e) the role of government, employers and non-government organizations to help Filipino domestic workers address OSH related issues/problems/concerns; and f) the necessary policy amendments/initiatives/programs to address OSH related issues/problems/concerns of Filipino domestic workers. The study conducted a survey using non-probability sampling, two focus group discussions, two group interviews, and fourteen face-to-face interviews. These were further supplemented with an email correspondence to a key informant based in another country. Books, journals, magazines, and relevant websites further substantiated and enriched data of the research. Findings of the study point to the fact that domestic workers have low level of awareness on OSH because of poor information drive, fragmented implementation of the Domestic Workers Act, inactive campaign at the barangay level, weakened advocacy for domestic workers, absence of law on OSH for domestic workers, and generally low safety culture in the country among others. Filipino domestic workers suffer from insufficient rest, long hours of work, heavy workload, occupational stress, poor accommodation, insufficient hours of sleep, deprivation of day off, accidents and injuries such as cuts, burns, slipping, stumbling, electrical grounding, and fire, verbal, physical and sexual abuses, lack of medical assistance, none provision of personal protective equipment (PPE), absence of knowledge on the proper way of lifting, working at heights, and insufficient food provision. They also suffer from psychological problems because of separation from one’s family, limited mobility in the household where they work, injuries and accidents from using advanced home appliances and taking care of pets, low self-esteem, ergonomic problems, the need to adjust to all household members who have various needs and demands, inability to voice their complaints, drudgery of work, and emotional stress. With regard to illness or health problems, they commonly experience leg pains, back pains, and headaches. In the absence of intervention programs like those offered in the formal employment set up, domestic workers resort to praying, turn to family, relatives and friends for social and emotional support, connect with them through social media like Facebook which also serve as a means of entertainment to them, talk to their employer, and just try to be optimistic about their situation. Promoting OSH for domestic workers is very challenging and complicated because of interrelated factors such as cultural, knowledge, attitudinal, relational, social, resource, economic, political, institutional and legal problems. This complexity necessitates using a holistic and integrated approach as this is not a problem requiring simple solutions. With this recognition comes the full understanding that its success involves the action and cooperation of all duty bearers in attaining decent work for domestic workers.

Keywords: decent work, Filipino domestic workers, occupational safety and health, working conditions

Procedia PDF Downloads 230
24 Planning Railway Assets Renewal with a Multiobjective Approach

Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida

Abstract:

Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.

Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling

Procedia PDF Downloads 121
23 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 53
22 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 36
21 Understanding the Impact of Resilience Training on Cognitive Performance in Military Personnel

Authors: Haji Mohammad Zulfan Farhi Bin Haji Sulaini, Mohammad Azeezudde’en Bin Mohd Ismaon

Abstract:

The demands placed on military athletes extend beyond physical prowess to encompass cognitive resilience in high-stress environments. This study investigates the effects of resilience training on the cognitive performance of military athletes, shedding light on the potential benefits and implications for optimizing their overall readiness. In a rapidly evolving global landscape, armed forces worldwide are recognizing the importance of cognitive resilience alongside physical fitness. The study employs a mixed-methods approach, incorporating quantitative cognitive assessments and qualitative data from military athletes undergoing resilience training programs. Cognitive performance is evaluated through a battery of tests, including measures of memory, attention, decision-making, and reaction time. The participants, drawn from various branches of the military, are divided into experimental and control groups. The experimental group undergoes a comprehensive resilience training program, while the control group receives traditional physical training without a specific focus on resilience. The initial findings indicate a substantial improvement in cognitive performance among military athletes who have undergone resilience training. These improvements are particularly evident in domains such as attention and decision-making. The experimental group demonstrated enhanced situational awareness, quicker problem-solving abilities, and increased adaptability in high-stress scenarios. These results suggest that resilience training not only bolsters mental toughness but also positively impacts cognitive skills critical to military operations. In addition to quantitative assessments, qualitative data is collected through interviews and surveys to gain insights into the subjective experiences of military athletes. Preliminary analysis of these narratives reveals that participants in the resilience training program report higher levels of self-confidence, emotional regulation, and an improved ability to manage stress. These psychological attributes contribute to their enhanced cognitive performance and overall readiness. Moreover, this study explores the potential long-term benefits of resilience training. By tracking participants over an extended period, we aim to assess the durability of cognitive improvements and their effects on overall mission success. Early results suggest that resilience training may serve as a protective factor against the detrimental effects of prolonged exposure to stressors, potentially reducing the risk of burnout and psychological trauma among military athletes. This research has significant implications for military organizations seeking to optimize the performance and well-being of their personnel. The findings suggest that integrating resilience training into the training regimen of military athletes can lead to a more resilient and cognitively capable force. This, in turn, may enhance mission success, reduce the risk of injuries, and improve the overall effectiveness of military operations. In conclusion, this study provides compelling evidence that resilience training positively impacts the cognitive performance of military athletes. The preliminary results indicate improvements in attention, decision-making, and adaptability, as well as increased psychological resilience. As the study progresses and incorporates long-term follow-ups, it is expected to provide valuable insights into the enduring effects of resilience training on the cognitive readiness of military athletes, contributing to the ongoing efforts to optimize military personnel's physical and mental capabilities in the face of ever-evolving challenges.

Keywords: military athletes, cognitive performance, resilience training, cognitive enhancement program

Procedia PDF Downloads 48