Search results for: operational efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7325

Search results for: operational efficiency

335 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 109
334 Generating Ideas to Improve Road Intersections Using Design with Intent Approach

Authors: Omar Faruqe Hamim, M. Shamsul Hoque, Rich C. McIlroy, Katherine L. Plant, Neville A. Stanton

Abstract:

Road safety has become an alarming issue, especially in low-middle income developing countries. The traditional approaches lack the out of the box thinking, making engineers confined to applying usual techniques in making roads safer. A socio-technical approach has recently been introduced in improving road intersections through designing with intent. This Design With Intent (DWI) approach aims to give practitioners a more nuanced approach to design and behavior, working with people, people’s understanding, and the complexities of everyday human experience. It's a collection of design patterns —and a design and research approach— for exploring the interactions between design and people’s behavior across products, services, and environments, both digital and physical. Through this approach, it can be seen that how designing with people in behavior change can be applied to social and environmental problems, as well as commercially. It has a total of 101 cards across eight different lenses, such as architectural, error-proofing, interaction, ludic, perceptual, cognitive, Machiavellian, and security lens each having its own distinct characteristics of extracting ideas from the participant of this approach. For this research purpose, a three-legged accident blackspot intersection of a national highway has been chosen to perform the DWI workshop. Participants from varying fields such as civil engineering, naval architecture and marine engineering, urban and regional planning, and sociology actively participated for a day long workshop. While going through the workshops, the participants were given a preamble of the accident scenario and a brief overview of DWI approach. Design cards of varying lenses were distributed among 10 participants and given an hour and a half for brainstorming and generating ideas to improve the safety of the selected intersection. After the brainstorming session, the participants spontaneously went through roundtable discussions regarding the ideas they have come up with. According to consensus of the forum, ideas were accepted or rejected. These generated ideas were then synthesized and agglomerated to bring about an improvement scheme for the intersection selected in our study. To summarize the improvement ideas from DWI approach, color coding of traffic lanes for separate vehicles, channelizing the existing bare intersection, providing advance warning traffic signs, cautionary signs and educational signs motivating road users to drive safe, using textured surfaces at approach with rumble strips before the approach of intersection were the most significant one. The motive of this approach is to bring about new ideas from the road users and not just depend on traditional schemes to increase the efficiency, safety of roads as well and to ensure the compliance of road users since these features are being generated from the minds of users themselves.

Keywords: design with intent, road safety, human experience, behavior

Procedia PDF Downloads 111
333 Implementation of Ecological and Energy-Efficient Building Concepts

Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler

Abstract:

A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.

Keywords: energy-efficiency, green architecture, renewable resources, sustainable building

Procedia PDF Downloads 129
332 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 24
331 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 229
330 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs

Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli

Abstract:

The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.

Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)

Procedia PDF Downloads 292
329 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 57
328 Tax Administration Constraints: The Case of Small and Medium Size Enterprises in Addis Ababa, Ethiopia

Authors: Zeleke Ayalew Alemu

Abstract:

This study aims to investigate tax administration constraints in Addis Ababa with a focus on small and medium-sized enterprises by identifying issues and constraints in tax administration and assessment. The study identifies problems associated with taxpayers and tax-collecting authorities in the city. The research used qualitative and quantitative research designs and employed questionnaires, focus group discussion and key informant interviews for primary data collection and also used secondary data from different sources. The study identified many constraints that taxpayers are facing. Among others, tax administration offices’ inefficiency, reluctance to respond to taxpayers’ questions, limited tax assessment and administration knowledge and skills, and corruption and unethical practices are the major ones. Besides, the tax laws and regulations are complex and not enforced equally and fully on all taxpayers, causing a prevalence of business entities not paying taxes. This apparently results in an uneven playing field. Consequently, the tax system at present is neither fair nor transparent and increases compliance costs. In case of dispute, the appeal process is excessively long and the tax authority’s decision is irreversible. The Value Added Tax (VAT) administration and compliance system is not well designed, and VAT has created economic distortion among VAT-registered and non-registered taxpayers. Cash registration machine administration and the reporting system are big headaches for taxpayers. With regard to taxpayers, there is a lack of awareness of tax laws and documentation. Based on the above and other findings, the study forwarded recommendations, such as, ensuring fairness and transparency in tax collection and administration, enhancing the efficiency of tax authorities by use of modern technologies and upgrading human resources, conducting extensive awareness creation programs, and enforcing tax laws in a fair and equitable manner. The objective of this study is to assess problems, weaknesses and limitations of small and medium-sized enterprise taxpayers, tax authority administrations, and laws as sources of inefficiency and dissatisfaction to forward recommendations that bring about efficient, fair and transparent tax administration. The entire study has been conducted in a participatory and process-oriented manner by involving all partners and stakeholders at all levels. Accordingly, the researcher used participatory assessment methods in generating both secondary and primary data as well as both qualitative and quantitative data on the field. The research team held FGDs with 21 people from Addis Ababa City Administration tax offices and selected medium and small taxpayers. The study team also interviewed 10 KIIs selected from the various segments of stakeholders. The lead, along with research assistants, handled the KIIs using a predesigned semi-structured questionnaire.

Keywords: taxation, tax system, tax administration, small and medium enterprises

Procedia PDF Downloads 44
327 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 93
326 Basics of Gamma Ray Burst and Its Afterglow

Authors: Swapnil Kumar Singh

Abstract:

Gamma-ray bursts (GRB's), short and intense pulses of low-energy γ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. GRB'sare accompanied by long-lasting afterglows, and they are associated with core-collapse supernovae. The detection of delayed emission in X-ray, optical, and radio wavelength, or "afterglow," following a γ-ray burst can be described as the emission of a relativistic shell decelerating upon collision with the interstellar medium. While it is fair to say that there is strong diversity amongst the afterglow population, probably reflecting diversity in the energy, luminosity, shock efficiency, baryon loading, progenitor properties, circumstellar medium, and more, the afterglows of GRBs do appear more similar than the bursts themselves, and it is possible to identify common features within afterglows that lead to some canonical expectations. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave, and radio). It is a slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. In X-ray wavelengths, the GRB afterglow fades quickly at first, then transitions to a less-steep drop-off (it does other stuff after that, but we'll ignore that for now). During these early phases, the X-ray afterglow has a spectrum that looks like a power law: flux F∝ E^β, where E is energy and beta is some number called the spectral index. This kind of spectrum is characteristic of synchrotron emission, which is produced when charged particles spiral around magnetic field lines at close to the speed of light. In addition to the outgoing forward shock that ploughs into the interstellar medium, there is also a so-called reverse shock, which propagates backward through the ejecta. In many ways," reverse" shock can be misleading; this shock is still moving outward from the restframe of the star at relativistic velocity but is ploughing backward through the ejecta in their frame and is slowing the expansion. This reverse shock can be dynamically important, as it can carry comparable energy to the forward shock. The early phases of the GRB afterglow still provide a good description even if the GRB is highly collimated since the individual emitting regions of the outflow are not in causal contact at large angles and so behave as though they are expanding isotropically. The majority of afterglows, at times typically observed, fall in the slow cooling regime, and the cooling break lies between the optical and the X-ray. Numerous observations support this broad picture for afterglows in the spectral energy distribution of the afterglow of the very bright GRB. The bluer light (optical and X-ray) appears to follow a typical synchrotron forward shock expectation (note that the apparent features in the X-ray and optical spectrum are due to the presence of dust within the host galaxy). We need more research in GRB and Particle Physics in order to unfold the mysteries of afterglow.

Keywords: GRB, synchrotron, X-ray, isotropic energy

Procedia PDF Downloads 70
325 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water

Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates

Abstract:

The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.

Keywords: environment, fiber, petroleum, sorption

Procedia PDF Downloads 106
324 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 44
323 Vertical Village Buildings as Sustainable Strategy to Re-Attract Mega-Cities in Developing Countries

Authors: M. J. Eichner, Y. S. Sarhan

Abstract:

Overall study purpose has been the evaluation of ‘Vertical Villages’ as a new sustainable building typology, reducing significantly negative impacts of rapid urbanization processes in third world capital cities. Commonly in fast-growing cities, housing and job supply, educational and recreational opportunities, as well as public transportation infrastructure, are not accommodating rapid population growth, exposing people to high noise and emission polluted living environments with low-quality neighborhoods and a lack of recreational areas. Like many others, Egypt’s capital city Cairo, according to the UN facing annual population growth rates of up to 428.000 people, is struggling to address the general deterioration of urban living conditions. New settlements typologies and urban reconstruction approach hardly follow sustainable urbanization principles or socio-ecologic urbanization models with severe effects not only for inhabitants but also for the local environment and global climate. The authors prove that ‘Vertical Village’ buildings can offer a sustainable solution for increasing urban density with at the same time improving the living quality and urban environment significantly. Inserting them within high-density urban fabrics the ecologic and socio-cultural conditions of low-quality neighborhoods can be transformed towards districts, considering all needs of sustainable and social urban life. This study analyzes existing building typologies in Cairo’s «low quality - high density» districts Ard el Lewa, Dokki and Mohandesen according to benchmarks for sustainable residential buildings, identifying major problems and deficits. In 3 case study design projects, the sustainable transformation potential through ‘Vertical Village’ buildings are laid out and comparative studies show the improvement of the urban microclimate, safety, social diversity, sense of community, aesthetics, privacy, efficiency, healthiness and accessibility. The main result of the paper is that the disadvantages of density and overpopulation in developing countries can be converted with ‘Vertical Village’ buildings into advantages, achieving attractive and environmentally friendly living environments with multiple synergies. The paper is documenting based on scientific criteria that mixed-use vertical building structures, designed according to sustainable principles of low rise housing, can serve as an alternative to convert «low quality - high density» districts in megacities, opening a pathway for governments to achieve sustainable urban transformation goals. Neglected informal urban districts, home to millions of the poorer population groups, can be converted into healthier living and working environments.

Keywords: sustainable, architecture, urbanization, urban transformation, vertical village

Procedia PDF Downloads 86
322 Guests’ Satisfaction and Intention to Revisit Smart Hotels: Qualitative Interviews Approach

Authors: Raymond Chi Fai Si Tou, Jacey Ja Young Choe, Amy Siu Ian So

Abstract:

Smart hotels can be defined as the hotel which has an intelligent system, through digitalization and networking which achieve hotel management and service information. In addition, smart hotels include high-end designs that integrate information and communication technology with hotel management fulfilling the guests’ needs and improving the quality, efficiency and satisfaction of hotel management. The purpose of this study is to identify appropriate factors that may influence guests’ satisfaction and intention to revisit Smart Hotels based on service quality measurement of lodging quality index and extended UTAUT theory. Unified Theory of Acceptance and Use of Technology (UTAUT) is adopted as a framework to explain technology acceptance and use. Since smart hotels are technology-based infrastructure hotels, UTATU theory could be as the theoretical background to examine the guests’ acceptance and use after staying in smart hotels. The UTAUT identifies four key drivers of the adoption of information systems: performance expectancy, effort expectancy, social influence, and facilitating conditions. The extended UTAUT modifies the definitions of the seven constructs for consideration; the four previously cited constructs of the UTAUT model together with three new additional constructs, which including hedonic motivation, price value and habit. Thus, the seven constructs from the extended UTAUT theory could be adopted to understand their intention to revisit smart hotels. The service quality model will also be adopted and integrated into the framework to understand the guests’ intention of smart hotels. There are rare studies to examine the service quality on guests’ satisfaction and intention to revisit in smart hotels. In this study, Lodging Quality Index (LQI) will be adopted to measure the service quality in smart hotels. Using integrated UTAUT theory and service quality model because technological applications and services require using more than one model to understand the complicated situation for customers’ acceptance of new technology. Moreover, an integrated model could provide more perspective insights to explain the relationships of the constructs that could not be obtained from only one model. For this research, ten in-depth interviews are planned to recruit this study. In order to confirm the applicability of the proposed framework and gain an overview of the guest experience of smart hotels from the hospitality industry, in-depth interviews with the hotel guests and industry practitioners will be accomplished. In terms of the theoretical contribution, it predicts that the integrated models from the UTAUT theory and the service quality will provide new insights to understand factors that influence the guests’ satisfaction and intention to revisit smart hotels. After this study identifies influential factors, smart hotel practitioners could understand which factors may significantly influence smart hotel guests’ satisfaction and intention to revisit. In addition, smart hotel practitioners could also provide outstanding guests experience by improving their service quality based on the identified dimensions from the service quality measurement. Thus, it will be beneficial to the sustainability of the smart hotels business.

Keywords: intention to revisit, guest satisfaction, qualitative interviews, smart hotels

Procedia PDF Downloads 176
321 Training for Search and Rescue Teams: Online Training for SAR Teams to Locate Lost Persons with Dementia Using Drones

Authors: Dalia Hanna, Alexander Ferworn

Abstract:

This research provides detailed proposed training modules for the public safety teams and, specifically, SAR teams responsible for search and rescue operations related to finding lost persons with dementia. Finding a lost person alive is the goal of this training. Time matters if a lost person is to be found alive. Finding lost people living with dementia is quite challenging, as they are unaware they are lost and will not seek help. Even a small contribution to SAR operations could contribute to saving a life. SAR operations will always require expert professional and human volunteers. However, we can reduce their time, save lives, and reduce costs by providing practical training that is based on real-life scenarios. The content for the proposed training is based on the research work done by the researcher in this area. This research has demonstrated that, based on utilizing drones, the algorithmic approach could support a successful search outcome. Understanding the behavior of the lost person, learning where they may be found, predicting their survivability, and automating the search are all contributions of this work, founded in theory and demonstrated in practice. In crisis management, human behavior constitutes a vital aspect in responding to the crisis; the speed and efficiency of the response often get affected by the difficulty of the context of the operation. Therefore, training in this area plays a significant role in preparing the crisis manager to manage the emotional aspects that lead to decision-making in these critical situations. Since it is crucial to gain high-level strategic choices and the ability to apply crisis management procedures, simulation exercises become central in training crisis managers to gain the needed skills to respond critically to these events. The training will enhance the responders’ ability to make decisions and anticipate possible consequences of their actions through flexible and revolutionary reasoning in responding to the crisis efficiently and quickly. As adult learners, search and rescue teams will be approaching training and learning by taking responsibility of the learning process, appreciate flexible learning and as contributors to the teaching and learning happening during that training. These are all characteristics of adult learning theories. The learner self-reflects, gathers information, collaborates with others and is self-directed. One of the learning strategies associated with adult learning is effective elaboration. It helps learners to remember information in the long term and use it in situations where it might be appropriate. It is also a strategy that can be taught easily and used with learners of different ages. Designers must design reflective activities to improve the student’s intrapersonal awareness.

Keywords: training, OER, dementia, drones, search and rescue, adult learning, UDL, instructional design

Procedia PDF Downloads 71
320 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study

Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming

Abstract:

Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.

Keywords: binary outcomes, statistical methods, clinical trials, simulation study

Procedia PDF Downloads 83
319 How Can Food Retailing Benefit from Neuromarketing Research: The Influence of Traditional and Innovative Tools of In-Store Communication on Consumer Reactions

Authors: Jakub Berčík, Elena Horská, Ľudmila Nagyová

Abstract:

Nowadays, the point of sale remains one of the few channels of communication which is not oversaturated yet and has great potential for the future. The fact that purchasing decisions are significantly affected by emotions, while up to 75 % of them are implemented at the point of sale, only demonstrates its importance. The share of impulsive purchases is about 60-75 %, depending on the particular product category. Nevertheless, habits predetermine the content of the shopping cart above all and hence in this regard the role of in-store communication is to disrupt the routine and compel the customer to try something new. This is the reason why it is essential to know how to work with this relatively young branch of marketing communication as efficiently as possible. New global trend in this discipline is evaluating the effectiveness of particular tools in the in-store communication. To increase the efficiency it is necessary to become familiar with the factors affecting the customer both consciously and unconsciously, and that is a task for neuromarketing and sensory marketing. It is generally known that the customer remembers the negative experience much longer and more intensely than the positive ones, therefore it is essential for marketers to avoid this negative experience. The final effect of POP (Point of Purchase) or POS (Point of Sale) tools is conditional not only on their quality and design, but also on the location at the point of sale which contributes to the overall positive atmosphere in the store. Therefore, in-store advertising is increasingly in the center of attention and companies are willing to spend even a third of their marketing communication budget on it. The paper deals with a comprehensive, interdisciplinary research of the impact of traditional as well as innovative tools of in-store communication on the attention and emotional state (valence and arousal) of consumers on the food market. The research integrates measurements with eye camera (Eye tracker) and electroencephalograph (EEG) in real grocery stores as well as in laboratory conditions with the purpose of recognizing attention and emotional response among respondents under the influence of selected tools of in-store communication. The object of the research includes traditional (e.g. wobblers, stoppers, floor graphics) and innovative (e.g. displays, wobblers with LED elements, interactive floor graphics) tools of in-store communication in the fresh unpackaged food segment. By using a mobile 16-channel electroencephalograph (EEG equipment) from the company EPOC, a mobile eye camera (Eye tracker) from the company Tobii and a stationary eye camera (Eye tracker) from the company Gazepoint, we observe the attention and emotional state (valence and arousal) to reveal true consumer preferences using traditional and new unusual communication tools at the point of sale of the selected foodstuffs. The paper concludes with suggesting possibilities for rational, effective and energy-efficient combination of in-store communication tools, by which the retailer can accomplish not only captivating and attractive presentation of displayed goods, but ultimately also an increase in retail sales of the store.

Keywords: electroencephalograph (EEG), emotion, eye tracker, in-store communication

Procedia PDF Downloads 370
318 Robotic Process Automation in Accounting and Finance Processes: An Impact Assessment of Benefits

Authors: Rafał Szmajser, Katarzyna Świetla, Mariusz Andrzejewski

Abstract:

Robotic process automation (RPA) is a technology of repeatable business processes performed using computer programs, robots that simulate the work of a human being. This approach assumes replacing an existing employee with the use of dedicated software (software robots) to support activities, primarily repeated and uncomplicated, characterized by a low number of exceptions. RPA application is widespread in modern business services, particularly in the areas of Finance, Accounting and Human Resources Management. By utilizing this technology, the effectiveness of operations increases while reducing workload, minimizing possible errors in the process, and as a result, bringing measurable decrease in the cost of providing services. Regardless of how the use of modern information technology is assessed, there are also some doubts as to whether we should replace human activities in the implementation of the automation in business processes. After the initial awe for the new technological concept, a reflection arises: to what extent does the implementation of RPA increase the efficiency of operations or is there a Business Case for implementing it? If the business case is beneficial, in which business processes is the greatest potential for RPA? A closer look at these issues was provided by in this research during which the respondents’ view of the perceived advantages resulting from the use of robotization and automation in financial and accounting processes was verified. As a result of an online survey addressed to over 500 respondents from international companies, 162 complete answers were returned from the most important types of organizations in the modern business services industry, i.e. Business or IT Process Outsourcing (BPO/ITO), Shared Service Centers (SSC), Consulting/Advisory and their customers. Answers were provided by representatives of the positions in their organizations: Members of the Board, Directors, Managers and Experts/Specialists. The structure of the survey allowed the respondents to supplement the survey with additional comments and observations. The results formed the basis for the creation of a business case calculating tangible benefits associated with the implementation of automation in the selected financial processes. The results of the statistical analyses carried out with regard to revenue growth confirmed the correctness of the hypothesis that there is a correlation between job position and the perception of the impact of RPA implementation on individual benefits. Second hypothesis (H2) that: There is a relationship between the kind of company in the business services industry and the reception of the impact of RPA on individual benefits was thus not confirmed. Based results of survey authors performed simulation of business case for implementation of RPA in selected Finance and Accounting Processes. Calculated payback period was diametrically different ranging from 2 months for the Account Payables process with 75% savings and in the extreme case for the process Taxes implementation and maintenance costs exceed the savings resulting from the use of the robot.

Keywords: automation, outsourcing, business process automation, process automation, robotic process automation, RPA, RPA business case, RPA benefits

Procedia PDF Downloads 113
317 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 406
316 Effects of Environmental and Genetic Factors on Growth Performance, Fertility Traits and Milk Yield/Composition in Saanen Goats

Authors: Deniz Dincel, Sena Ardicli, Hale Samli, Mustafa Ogan, Faruk Balci

Abstract:

The aim of the study was to determine the effects of some environmental and genetic factors on growth, fertility traits, milk yield and composition in Saanen goats. For this purpose, the total of 173 Saanen goats and kids were investigated for growth, fertility and milk traits in Marmara Region of Turkey. Fertility parameters (n=70) were evaluated during two years. Milk samples were collected during the lactation and the milk yield/components (n=59) of each goat were calculated. In terms of CSN3 and AGPAT6 gene; the genotypes were defined by PCR-RFLP. Saanen kids (n=86-112) were measured from birth to 6 months of life. The birth, weaning, 60ᵗʰ, 90ᵗʰ, 120ᵗʰ and 180tᵗʰ days of average live weights were calculated. The effects of maternal age on pregnancy rate (p < 0.05), birth rate (p < 0.05), infertility rate (p < 0.05), single born kidding (p < 0.001), twinning rate (p < 0.05), triplet rate (p < 0.05), survival rate of kids until weaning (p < 0.05), number of kids per parturition (p < 0.01) and number of kids per mating (p < 0.01) were found significant. The impacts of year on birth rate (p < 0.05), abortion rate (p < 0.001), single born kidding (p < 0.01), survival rate of kids until weaning (p < 0.01), number of kids per mating (p < 0.01) were found significant for fertility traits. The impacts of lactation length on all milk yield parameters (lactation milk, protein, fat, totally solid, solid not fat, casein and lactose yield) (p < 0.001) were found significant. The effects of age on all milk yield parameters (lactation milk, protein, fat, total solid, solid not fat, casein and lactose yield) (p < 0.001), protein rate (p < 0.05), fat rate (p < 0.05), total solid rate (p < 0.01), solid not fat rate (p < 0.05), casein rate (p < 0.05) and lactation length (p < 0.01), were found significant too. However, the effect of AGPAT6 gene on milk yield and composition was not found significant in Saanen goats. The herd was found monomorphic (FF) for CSN3 gene. The effects of sex on live weights until 90ᵗʰ days of life (birth, weaning and 60ᵗʰ day of average weight) were found significant statistically (p < 0.001). The maternal age affected only birth weight (p < 0,001). The effects month at birth on all of the investigated day [the birth, 120ᵗʰ, 180ᵗʰ days (p < 0.05); the weaning, 60ᵗʰ, 90ᵗʰ days (p < 0,001)] were found significant. The birth type was found significant on the birth (p < 0,001), weaning (p < 0,01), 60ᵗʰ (p < 0,01) and 90ᵗʰ (p < 0,01) days of average live weights. As a result, screening the other regions of CSN3, AGPAT6 gene and also investigation the phenotypic association of them should be useful to clarify the efficiency of target genes. Environmental factors such as maternal age, year, sex and birth type were found significant on some growth, fertility and milk traits in Saanen goats. So consideration of these factors could be used as selection criteria in dairy goat breeding.

Keywords: fertility, growth, milk yield, Saanen goats

Procedia PDF Downloads 142
315 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 186
314 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 47
313 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods

Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard

Abstract:

The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.

Keywords: algorithms, genetics, matching, population

Procedia PDF Downloads 117
312 Use of Misoprostol in Pregnancy Termination in the Third Trimester: Oral versus Vaginal Route

Authors: Saimir Cenameri, Arjana Tereziu, Kastriot Dallaku

Abstract:

Introduction: Intra-uterine death is a common problem in obstetrical practice, and can lead to complications if left to resolve spontaneously. The cervix is unprepared, making inducing of labor difficult. Misoprostol is a synthetic prostaglandin E1 analogue, inexpensive, and is presented valid thanks to its ability to bring about changes in the cervix that lead to the induction of uterine contractions. Misoprostol is quickly absorbed when taken orally, resulting in high initial peak serum concentrations compared with the vaginal route. The vaginal misoprostol peak serum concentration is not as high and demonstrates a more gradual serum concentration decline. This is associated with many benefits for the patient; fast induction of labor; smaller doses; and fewer side effects (dose-depended). Mostly it has been used the regime of 50 μg/4 hour, with a high percentage of success and limited side effects. Objective: Evaluation of the efficiency of the use of oral and vaginal misoprostol in inducing labor, and comparing it with its use not by a previously defined protocol. Methods: Participants in this study included patients at U.H.O.G. 'Koco Gliozheni', Tirana from April 2004-July 2006, presenting with an indication for inducing labor in the third trimester for pregnancy termination. A total of 37 patients were randomly admitted for birth inducing activity, according to protocol (26), oral or vaginal protocol (10 vs. 16), and a control group (11), not subject to the protocol, was created. Oral or vaginal misoprostol was administered at a dose of 50 μg/4 h, while the fourth group participants were treated individually by the members of the medical staff. The main result of interest was the time between induction of labor to birth. Kruskal-Wallis test was used to compare the average age, parity, women weight, gestational age, Bishop's score, the size of the uterus and weight of the fetus between the four groups in the study. The Fisher exact test was used to compare day-stay and causes in the four groups. Mann-Whitney test was used to compare the time of the expulsion and the number of doses between oral and vaginal group. For all statistical tests used, the value of P ≤ 0.05 was considered statistically significant. Results: The four groups were comparable with regard to woman age and weight, parity, abortion indication, Bishop's score, fetal weight and the gestational age. There was significant difference in the percentage of deliveries within 24 hours. The average time from induction to birth per route (vaginal, oral, according to protocol and not according to the protocol) was respectively; 10.43h; 21.10h; 15.77h, 21.57h. There was no difference in maternal complications in groups. Conclusions: Use of vaginal misoprostol for inducing labor in the third trimester for termination of pregnancy appears to be more effective than the oral route, and even more to uses not according to the protocols approved before, where complications are greater and unjustified.

Keywords: inducing labor, misoprostol, pregnancy termination, third trimester

Procedia PDF Downloads 155
311 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach

Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao

Abstract:

Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.

Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search

Procedia PDF Downloads 38
310 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students

Authors: Majed A. Alsalem

Abstract:

In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.

Keywords: deaf and hard of hearing, digital books, literacy, technology

Procedia PDF Downloads 465
309 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. The 2022 Annual Homeless Assessment Report (AHAR) to Congress highlighted alarming statistics, emphasizing the need for effective decision-making and budget allocation within local planning bodies known as Continuums of Care (CoC). This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 36
308 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.

Keywords: energy simulation, modelling calibration, occupant behavior, university building

Procedia PDF Downloads 112
307 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity

Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel

Abstract:

A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.

Keywords: myelofibrosis, arthritis, arthralgia, malignancy

Procedia PDF Downloads 67
306 Enhancing Efficiency of Building through Translucent Concrete

Authors: Humaira Athar, Brajeshwar Singh

Abstract:

Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.

Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete

Procedia PDF Downloads 98