Search results for: multicolor magnetic particle imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3843

Search results for: multicolor magnetic particle imaging

3813 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 127
3812 Light-Emitting Diode Assisted Synthesis of Ag@Fe3O4 Nanoparticles and Their Application in Magnetic and Photothermal Hyperthermia Therapy

Authors: Pei-Wen Lin, Ta-I Yang

Abstract:

Cancer has been one of the leading causes of human death for centuries. Considerable effort has been devoted to developing new treatments to reduce and control cancers. Magnetic particle hyperthermia and near-infrared photothermal therapy are the promising strategies to treat cancers due to its effectiveness with only mild side effects. This study focused on synthesizing magnetic Ag@Fe3O4 nanoparticles applicable for both of magnetic hyperthermia and near-infrared photothermal therapy. The hydrophilic poly(diallyldimethylammonium chloride) polymer was utilized to prepare superparamagnetic Fe3O4 clusters and to promote silver nanoparticles grown on Fe3O4 surfaces, obtaining Ag@Fe3O4 nanoparticles. The morphology (shape and dimension) of Ag nanoparticles was subsequently tailored using commercial LED lights. Therefore, the resulting Ag@Fe3O4 nanoparticles can absorb specific wavelength of light ranging from 400 nm to 800 nm by adjusting the wavelength of LED lights and the free silver ions in reaction solution. Heating performance tests confirmed that the synthesized Ag@Fe3O4 nanoparticles show appreciable heating capability for both of magnetic particle hyperthermia and near-infrared photothermal therapy. The findings in this study could provide new ideas to design functional materials to treat cancers.

Keywords: light-emitting diode assisted synthesis, magnetic particles, photothermal materials, hyperthermia

Procedia PDF Downloads 255
3811 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis

Authors: Alyona Gencheva

Abstract:

The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.

Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk

Procedia PDF Downloads 81
3810 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing

Procedia PDF Downloads 272
3809 Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents

Authors: Suhas Pednekar, Prashant Chavan, Ramesh Chaughule, Deepak Patkar

Abstract:

Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water.

Keywords: cancer drug, hydrodynamic size, magnetic nanoparticles, MRI

Procedia PDF Downloads 458
3808 Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection

Authors: Chaoyan Huang, Hongxia Zheng

Abstract:

For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best.

Keywords: galactic cosmic rays, active protection, shielding magnetic field configuration, shielding effect

Procedia PDF Downloads 106
3807 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 113
3806 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex

Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu

Abstract:

This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.

Keywords: aeromagnetic, basement complex, meta-sediment, precambrian

Procedia PDF Downloads 404
3805 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 353
3804 Diffusion Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Detecting Malignancy in Maxillofacial Lesions

Authors: Mohamed Khalifa Zayet, Salma Belal Eiid, Mushira Mohamed Dahaba

Abstract:

Introduction: Malignant tumors may not be easily detected by traditional radiographic techniques especially in an anatomically complex area like maxillofacial region. At the same time, the advent of biological functional MRI was a significant footstep in the diagnostic imaging field. Objective: The purpose of this study was to define the malignant metabolic profile of maxillofacial lesions using diffusion MRI and magnetic resonance spectroscopy, as adjunctive aids for diagnosing of such lesions. Subjects and Methods: Twenty-one patients with twenty-two lesions were enrolled in this study. Both morphological and functional MRI scans were performed, where T1, T2 weighted images, diffusion-weighted MRI with four apparent diffusion coefficient (ADC) maps were constructed for analysis, and magnetic resonance spectroscopy with qualitative and semi-quantitative analyses of choline and lactate peaks were applied. Then, all patients underwent incisional or excisional biopsies within two weeks from MR scans. Results: Statistical analysis revealed that not all the parameters had the same diagnostic performance, where lactate had the highest areas under the curve (AUC) of 0.9 and choline was the lowest with insignificant diagnostic value. The best cut-off value suggested for lactate was 0.125, where any lesion above this value is supposed to be malignant with 90 % sensitivity and 83.3 % specificity. Despite that ADC maps had comparable AUCs still, the statistical measure that had the final say was the interpretation of likelihood ratio. As expected, lactate again showed the best combination of positive and negative likelihood ratios, whereas for the maps, ADC map with 500 and 1000 b-values showed the best realistic combination of likelihood ratios, however, with lower sensitivity and specificity than lactate. Conclusion: Diffusion weighted imaging and magnetic resonance spectroscopy are state-of-art in the diagnostic arena and they manifested themselves as key players in the differentiation process of orofacial tumors. The complete biological profile of malignancy can be decoded as low ADC values, high choline and/or high lactate, whereas that of benign entities can be translated as high ADC values, low choline and no lactate.

Keywords: diffusion magnetic resonance imaging, magnetic resonance spectroscopy, malignant tumors, maxillofacial

Procedia PDF Downloads 147
3803 An Extraction of Cancer Region from MR Images Using Fuzzy Clustering Means and Morphological Operations

Authors: Ramandeep Kaur, Gurjit Singh Bhathal

Abstract:

Cancer diagnosis is very difficult task. Magnetic resonance imaging (MRI) scan is used to produce image of any part of the body and provides an efficient way for diagnosis of cancer or tumor. In existing method, fuzzy clustering mean (FCM) is used for the diagnosis of the tumor. In the proposed method FCM is used to diagnose the cancer of the foot. FCM finds the centroids of the clusters of the foot cancer obtained from MRI images. FCM thresholding result shows the extract region of the cancer. Morphological operations are applied to get extracted region of cancer.

Keywords: magnetic resonance imaging (MRI), fuzzy C mean clustering, segmentation, morphological operations

Procedia PDF Downloads 362
3802 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 360
3801 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 415
3800 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 86
3799 HR MRI CS Based Image Reconstruction

Authors: Krzysztof Malczewski

Abstract:

Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements.

Keywords: super-resolution, MRI, compressed sensing, sparse-sense, image enhancement

Procedia PDF Downloads 397
3798 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 113
3797 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 60
3796 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 551
3795 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method

Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández

Abstract:

Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.

Keywords: manganese-gallium ferrite, magnetic hyperthermia, heating ability, cytotoxicity

Procedia PDF Downloads 363
3794 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 203
3793 Determining Sources of Sediments at Nkula Dam in the Middle Shire River, Malawi, Using Mineral Magnetic Approach

Authors: M. K. Mzuza, W. Zhang, L. S. Chapola, M. Tembo

Abstract:

Shire River is the largest and longest river in Malawi emptying its water into the Zambezi River in Mozambique. Siltation is now a major problem in the Shire River due to catchment degradation. This study analysed soil samples from tributaries of the Shire River to determine sources of sediments that cause siltation using the mineral magnetic approach. Bulk sediments and separated particle size fractions of representative samples were collected from tributaries on the western and eastern sides of the Shire River, and Nkula Dam. Eastern tributaries showed relatively higher ferrimagnetic mineral contents and ferrimagnetic to anti ferromagnetic ratios than western tributaries. Sediments from both sides of the Shire River were distinguished by χARM, SIRM versus χlf and S-100 versus SIRM. Findings in this study showed that most of the sediments originated from the western part of the Shire River. Tributaries on the eastern side of the Shire River had higher values for concentration related parameters (χlf, χfd, χARM, SIRM, HIRM, S-100, and χARM/SIRM) than tributaries on the western side. Bulky and detailed magnetic measurements carried out on particle size fractions provided additional confirmation of magnetic contrasts between the two sides of the river suggesting differences in lithology, topography, climate and weather regimes in the catchments. This study demonstrated that the magnetic approach can provide a reliable means of understanding major sediment sources of Nkula Dam and similar situations. It can also help to assess future variations in sediment composition resulting from catchment changes

Keywords: ferrimagnetic minerals, Shire River, tributaries rivers, particle size , topography

Procedia PDF Downloads 444
3792 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation

Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira

Abstract:

The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.

Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy

Procedia PDF Downloads 103
3791 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy

Abstract:

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties

Procedia PDF Downloads 660
3790 Size Dependent Magnetic Properties of CoFe2-xGdxO4 (x = 0.1) Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, the effect of particle size on the structural and magnetic properties of CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles synthesized by starch-assisted sol-gel auto combustion method was investigated. The different sized CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles were achieved after annealing at different temperature 500, 700 and 900 oC. The structural phases, crystallite size and lattice parameter of synthesized ferrite nanoparticles were estimated from X-ray diffraction studies. The field emission scanning electron microscopy study demonstrated increase in particle size with increase of annealing temperature. Raman spectroscopy study indicated the change in octahedral and tetrahedral site related Raman modes in Gd3+ ions doped cobalt ferrite nanoparticles. An infrared spectroscopy study showed the presence of two absorption bands in the frequency range around 580 cm-1 (ν1) and around 340 cm-1 (ν2); which indicated the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Vibrating Sample magnetometer study showed that the saturation magnetization and coercivity changes with particle size of CoFe2-xGdxO4 (x =0.1) spinel ferrite.

Keywords: magnetic properties, spinel ferrite, nanoparticles, sol-gel synthesis

Procedia PDF Downloads 462
3789 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 49
3788 Joubert Syndrome and Related Disorders: A Single Center Experience

Authors: Ali Al Orf, Khawaja Bilal Waheed

Abstract:

Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.

Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia

Procedia PDF Downloads 65
3787 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 63
3786 A Four Free Element Radiofrequency Coil with High B₁ Homogeneity for Magnetic Resonance Imaging

Authors: Khalid Al-Snaie

Abstract:

In this paper, the design and the testing of a symmetrical radiofrequency prototype coil with high B₁ magnetic field homogeneity are presented. The developed coil comprises four tuned coaxial circular loops that can produce a relatively homogeneous radiofrequency field. In comparison with a standard Helmholtz pair that provides 2nd-order homogeneity, it aims to provide fourth-order homogeneity of the B₁ field while preserving the simplicity of implementation. Electrical modeling of the probe, including all couplings, is used to ensure these requirements. Results of comparison tests, in free space and in a spectro-imager, between a standard Helmholtz pair and the presented prototype coil are introduced. In terms of field homogeneity, an improvement of 30% is observed. Moreover, the proposed prototype coil possesses a better quality factor (+25% on average) and a noticeable improvement in sensitivity (+20%). Overall, this work, which includes both theoretical and experimental aspects, aims to contribute to the study and understanding of four-element radio frequency (RF) systems derived from Helmholtz coils for Magnetic Resonance Imaging

Keywords: B₁ homogeneity, MRI, NMR, radiofrequency, RF coil, free element systems

Procedia PDF Downloads 54
3785 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 177
3784 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor

Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh

Abstract:

Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.

Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging

Procedia PDF Downloads 230