Search results for: mold filling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 528

Search results for: mold filling

468 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger

Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust

Abstract:

This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.

Keywords: modeling, nanocomposite film, packaging, soy burger

Procedia PDF Downloads 270
467 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate

Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili

Abstract:

This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.

Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE

Procedia PDF Downloads 39
466 Study of the Morpho-Sedimentary Evolution of Tidal Mouths on the Southern Fringe of the Gulf of Gabes, Southeast of Tunisia: Hydrodynamic Circulation and Associated Sedimentary Movements

Authors: Chadlia Ounissi, Maher Gzam, Tahani Hallek, Salah Mahmoudi, Mabrouk Montacer

Abstract:

This work consists of a morphological study of the coastal domain at the central fringe of the Gulf of Gabes, Southeast of Tunisia, belonging to the structural domain of the maritime Jeffara. The diachronic study of tidal mouths in the study area and the observation of morphological markers revealed the existence of hydro-sedimentary processes leading to sedimentary accumulation and filling of the estuarine system. This filling process is materialized by the genesis of a sandy cord and the lateral migration of the tidal mouth. Moreover, we have been able to affirm, by the use of satellite images, that the dominant and responsible current at this particular coastal morphology is directed to the North, having constituted a controversy on the occurrence of what is previously mentioned in the literature. The speed of the lateral displacement of the channel varies as a function of the hydrodynamic forcing. Wave-dominated sites recorded the fastest speed (18 m/year) in the image of the mouth of Wadi el Melah. Tidal dominated sites in the Wadi Zerkine satellite image recorded a very low lateral migration (2 m / year). This variation in speed indicates that the intensity of the coastal current is uneven along the coast. This general pattern of hydrodynamic circulation, to the north, of the central fringe of the Gulf of Gabes, is disturbed by hydro-sedimentary cells.

Keywords: tidal mouth, direction of current, filling, sediment transport, Gulf of Gabes

Procedia PDF Downloads 254
465 Application of Enzyme-Mediated Calcite Precipitation for Surface Control of Gold Mining Tailing Waste

Authors: Yogi Priyo Pradana, Heriansyah Putra, Regina Aprilia Zulfikar, Maulana Rafiq Ramadhan, Devyan Meisnnehr, Zalfa Maulida Insani

Abstract:

This paper studied the effects and mechanisms of fine-grained tailing by Enzyme-Mediated Calcite Precipitation (EMCP). Grouting solution used consists of reagents (CaCl₂ and (CO(NH₂)₂) and urease enzymes which react to produce CaCO₃. In sample preparation, the test tube is used to investigate the precipitation rate of calcite. The grouting solution added is 75 mL for one mold sample. The solution was poured into a mold sample up to as high as 5 mm from the top surface of the tailing to ensure the entire surface is submerged. The sample is left open in a cylinder for up to 3 days for curing. The direct mixing method is conducted so that the cementation process occurs by evenly distributed. The relationship between the results of the UCS test and the calcite precipitation rate likely indicates that the amount of calcite deposited in treated tailing could control the strength of the tailing. The sample results are analyzed using atomic absorption spectroscopy (AAS) to evaluate metal and metalloid content. Calcium carbonate deposited in the tailing is expected to strengthen the bond between tailing granules, which are easily slipped on the banks of the tailing dam. The EMCP method is expected to strengthen tailing in erosion-control surfaces.

Keywords: tailing, EMCP, UCS, AAS

Procedia PDF Downloads 109
464 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 220
463 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling

Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed

Abstract:

Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.

Keywords: machine learning, pattern recognition, facial pose classification, time series

Procedia PDF Downloads 321
462 Correlation Between Diastolic Function and Lower GLS in Hypertensive Patients

Authors: A. Kherraf, S. Ouarrak, L. Azzouzi, R. Habbal

Abstract:

Introduction: Preserved LVEF heart failure is an important cause of mortality and morbidity in hypertensive patients. A strong correlation between impaired diastolic function and longitudinal systolic dysfunction. could have several explanations, first, the diastole is an energy dependent process, especially during its first phase, it also includes active systolic components during the phase of iso volumetric relaxation, in addition, the impairment of the intrinsic myocytic function is part of hypertensive pathology as evidenced by recent studies. METHODS AND MATERIALS: This work consists of performing in a series of 333 hypertensive patients (aged 25 to 75 years) a complete echocardiographic study, including LVEF by Simpson biplane method, the calculation of the indexed left ventricular mass, the analysis of the diastolic function, and finally, the study of the longitudinal deformation of the LV by the technique of speckletracking (calculation of the GLS). Patients with secondary hypertension, leaky or stenosing valve disease, arrhythmia, and a history of coronary insufficiency were excluded from this study. RESULTS: Of the 333 hypertensive patients, 225 patients (67.5%) had impaired diastolic function, of which 60 patients (18%) had high filling pressures. 49.39% had echocardigraphic HVG, Almost all of these patients (60 patients) had low GLS. There is a statistically very significant relationship between lower GLS and increased left ventricular filling pressures in hypertensive patients. These results suggest that increased filling pressures are closely associated with atrioventricular interaction in patients with hypertension, with a strong correlation with impairment of longitudinal systolic function and diastolic function CONCLUSION: Overall, a linear relationship is established between increased left ventricular mass, diastolic dysfunction, and longitudinal LV systolic dysfunction

Keywords: hypertension, diastolic function, left ventricle, heart failure

Procedia PDF Downloads 103
461 Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca

Authors: Seong-Ho Ha, Young-Ok Yoon, Shae K. Kim

Abstract:

Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified.

Keywords: Al-Mg alloy, Al2Ca, oxidation, MgO

Procedia PDF Downloads 250
460 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology

Authors: Joseph C. Chen, Venkata Karthik Jakka

Abstract:

The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.

Keywords: injection molding processes, taguchi parameter design, tensile strength, high-density polyethylene(HDPE)

Procedia PDF Downloads 163
459 The Effect of the Spinacia oleracea Extract on the Control of the Green Mold 'Penilillium digitatum' at the Post Harvested Citrus

Authors: Asma Chbani, Douaa Salim, Josephine Al Alam, Pascale De Caro

Abstract:

Penicillium digitatum, the causal agent of citrus green mold, is responsible for 90% of post-harvest losses. Chemical fungicides remain the most used products for protection against this pathogen but are also responsible for damage to human health and the environment. The aim of this study is to evaluate the ability of Spinacia oleracea extract to serve as biological control agents, an alternative to harmful synthetic fungicides, against orange decay for storing fruit caused by P. digitatum. In this study, we studied the implication of a crude extract of a green plant, Spinacia oleracea, in the protection of oranges against P. digitatum. Thus, in vivo antifungal tests as well as adhesion test were done. For in vivo antifungal test, oranges were pulverized with the prepared crude extracts at different concentrations ranged from 25 g L⁻¹ to 200 g L⁻¹, contaminated by the fungus and then observed during 8 weeks for their macroscopic changes at 24°C. For adhesion test, the adhesion index is defined as the number of Penicillium digitatum spores fixed per orange cell. An index greater than 25 is the indicator of a strong adhesion, whereas for an index less than 10, the adhesion is low. Ten orange cells were examined in triplicate for each extract, and the averages of adherent cells were calculated. Obtained results showed an inhibitory activity of the Penicillium development with the aqueous extract of dry Spinacia oleracea with a concentration of 50 g L⁻¹ considered as the minimal protective concentration. The prepared extracts showed a greater inhibition of the development of P. digitatum up to 10 weeks, even greater than the fungicide control Nystatin. Adhesion test’s results showed that the adhesion of P. digitatum spores to the epidermal cells of oranges in the presence of the crude spinach leaves extract is weak; the mean of the obtained adhesion index was estimated to 2.7. However, a high adhesion was observed with water used a negative control. In conclusion, all these results confirm that the use of this green plant highly rich in chlorophyll having several phytotherapeutic activities, could be employed as a great treatment for protection of oranges against mold and also as an alternative for chemical fungicides.

Keywords: Penicillium digitatum, Spinacia oleracea, oranges, biological control, postharvest diseases

Procedia PDF Downloads 145
458 Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads

Authors: Alvaro Quino, Roger Trejo, Gary Duran, Jordy Viso

Abstract:

This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study.

Keywords: sandy clay soils, rice husk ash, expanded polystyrene, soft soils

Procedia PDF Downloads 147
457 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 260
456 Soft Pneumatic Actuators Fabricated Using Soluble Polymer Inserts and a Single-Pour System for Improved Durability

Authors: Alexander Harrison Greer, Edward King, Elijah Lee, Safa Obuz, Ruhao Sun, Aditya Sardesai, Toby Ma, Daniel Chow, Bryce Broadus, Calvin Costner, Troy Barnes, Biagio DeSimone, Yeshwin Sankuratri, Yiheng Chen, Holly Golecki

Abstract:

Although a relatively new field, soft robotics is experiencing a rise in applicability in the secondary school setting through The Soft Robotics Toolkit, shared fabrication resources and a design competition. Exposing students outside of university research groups to this rapidly growing field allows for development of the soft robotics industry in new and imaginative ways. Soft robotic actuators have remained difficult to implement in classrooms because of their relative cost or difficulty of fabrication. Traditionally, a two-part molding system is used; however, this configuration often results in delamination. In an effort to make soft robotics more accessible to young students, we aim to develop a simple, single-mold method of fabricating soft robotic actuators from common household materials. These actuators are made by embedding a soluble polymer insert into silicone. These inserts can be made from hand-cut polystyrene, 3D-printed polyvinyl alcohol (PVA) or acrylonitrile butadiene styrene (ABS), or molded sugar. The insert is then dissolved using an appropriate solvent such as water or acetone, leaving behind a negative form which can be pneumatically actuated. The resulting actuators are seamless, eliminating the instability of adhering multiple layers together. The benefit of this approach is twofold: it simplifies the process of creating a soft robotic actuator, and in turn, increases its effectiveness and durability. To quantify the increased durability of the single-mold actuator, it was tested against the traditional two-part mold. The single-mold actuator could withstand actuation at 20psi for 20 times the duration when compared to the traditional method. The ease of fabrication of these actuators makes them more accessible to hobbyists and students in classrooms. After developing these actuators, they were applied, in collaboration with a ceramics teacher at our school, to a glove used to transfer nuanced hand motions used to throw pottery from an expert artist to a novice. We quantified the improvement in the users’ pottery-making skill when wearing the glove using image analysis software. The seamless actuators proved to be robust in this dynamic environment. Seamless soft robotic actuators created by high school students show the applicability of the Soft Robotics Toolkit for secondary STEM education and outreach. Making students aware of what is possible through projects like this will inspire the next generation of innovators in materials science and robotics.

Keywords: pneumatic actuator fabrication, soft robotic glove, soluble polymers, STEM outreach

Procedia PDF Downloads 98
455 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates

Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.

Keywords: sheep wool, water content, hygrothermal performance, mould growth risk

Procedia PDF Downloads 54
454 Rheological Study of Natural Sediments: Application in Filling of Estuaries

Authors: S. Serhal, Y. Melinge, D. Rangeard, F. Hage Chehadeh

Abstract:

Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction.

Keywords: estuaries, rheological behavior, sediments, Kinexus rheometer, Bingham model, viscosity, yield stress

Procedia PDF Downloads 130
453 Characterization of A390 Aluminum Alloy Produced at Different Slow Shot Speeds Using Assisted Vacuum High-Pressure Die Casting

Authors: Wenbo Yu, Zihao Yuan, Zhipeng Guo, Shoumei Xiong

Abstract:

Under different slow shot speeds in vacuum assisted high pressure die casting (VHPDC) process, plate-shaped specimens of hypereutectic A390 aluminum alloy were produced. According to the results, the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling. Meanwhile, it was found that the tensile properties of vacuum die castings were deteriorated by the porosity content. In addition, the average primary Si size varies between 14µm to 23µm, which has a binary functional relationship with the slow shot speeds. Due to the vacuum effect, the castings were treated by T6 heat treatment. After heat treatment, microstructural morphologies revealed that needle-shaped and thin-flaked eutectic Si particles became rounded while Al2Cu dissolved into α-Al matrix. For the as-received sample in-situ tensile test, microcracks firstly initiate at the primary Si particles and propagated along Al matrix with a transgranular fracture mode. In contrast, for the treated sample, the crack initiated at the Al2Cu particles and propagated along Al grain boundaries with an intergranular fracture mode. In-situ three bending test, microcracks firstly formed in the primary Si particles for both samples. Subsequently, the cracks between primary Si linked along Al grain boundaries in as received sample. In contrast, the cracks in primary Si linked through the solid lines in Al matrix. Furthermore, the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.

Keywords: A390 aluminum, vacuum assisted high pressure die casting, heat treatment, mechanical properties

Procedia PDF Downloads 213
452 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique

Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar

Abstract:

Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.

Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding

Procedia PDF Downloads 206
451 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: gas condensing unit, filling, inner heat exchanger, package, spraying, tunes

Procedia PDF Downloads 255
450 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 89
449 Physical Theory for One-Dimensional Correlated Electron Systems

Authors: Nelson Nenuwe

Abstract:

The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.

Keywords: critical exponents, conformal field theory, Hubbard model, t-J model

Procedia PDF Downloads 313
448 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 85
447 Development of Filling Material in 3D Printer with the Aid of Computer Software for Supported with Natural Zeolite for the Removal of Nitrogen and Phosphorus

Authors: Luís Fernando Cusioli, Leticia Nishi, Lucas Bairros, Gabriel Xavier Jorge, Sandro Rogério Lautenschalager, Celso Varutu Nakamura, Rosângela Bergamasco

Abstract:

Focusing on the elimination of nitrogen and phosphorus from sewage, the study proposes to face the challenges of eutrophication and to optimize the effectiveness of sewage treatment through biofilms and filling produced by a 3D printer, seeking to identify the most effective Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS). The study also proposes to evaluate the nitrification process in a Submerged Aerated Biological Filter (FBAS) on a pilot plant scale, quantifying the removal of nitrogen and phosphorus. The experiment will consist of two distinct phases, namely, a bench stage and the implementation of a pilot plant. During the bench stage, samples will be collected at five points to characterize the microbiota. Samples will be collected, and the microbiota will be investigated using Fluorescence In Situ Hybridization (FISH), deepening the understanding of the performance of biofilms in the face of multiple variables. In this context, the study contributes to the search for effective solutions to mitigate eutrophication and, thus, strengthen initiatives to improve effluent treatment.

Keywords: eutrophication, sewage treatment, biofilms, nitrogen and phosphorus removal, 3d printer, environmental efficiency

Procedia PDF Downloads 46
446 A Convenient Part Library Based on SolidWorks Platform

Authors: Wei Liu, Xionghui Zhou, Qiang Niu, Yunhao Ni

Abstract:

3D part library is an ideal approach to reuse the existing design and thus facilitates the modeling process, which will enhance the efficiency. In this paper, we implemented the thought on the SolidWorks platform. The system supports the functions of type and parameter selection, 3D template driving and part assembly. Finally, BOM is exported in Excel format. Experiment shows that our method can satisfy the requirement of die and mold designers.

Keywords: part library, SolidWorks, automatic assembly, intelligent

Procedia PDF Downloads 354
445 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 361
444 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 158
443 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 33
442 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 109
441 Evaluation of the Shelf Life of Horsetail Stems Stored in Ecological Packaging

Authors: Rosana Goncalves Das Dores, Maira Fonseca, Fernando Finger, Vicente Casali

Abstract:

Equisetum hyemale L. (horsetail, Equisetaceae) is a medicinal plant used and commercialized in simple paper bags or non-ecological packaging in Brazil. The aim of this work was to evaluate the relation between the bioactive compounds of horsetail stems stored in ecological packages (multi-ply paper sacks) at room temperature. Stems in primary and secondary stage were harvested from an organic estate, on December 2016, selected, measured (length from the soil to the apex (cm), stem diameter at ground level (DGL mm) and breast height (DBH mm) and cut into 10 cm. For the post-harvest evaluations, stems were stored in multi-ply paper sacks and evaluated daily to the respiratory rate, fresh weight loss, pH, presence of fungi / mold, phenolic compounds and antioxidant activity. The analyses were done with four replicates, over time (regression) and compared at 1% significance (Tukey test). The measured heights were 103.7 cm and 143.5 cm, DGL was 2.5mm and 8.4 mm and DBH of 2.59 and 6.15 mm, respectively for primary and secondary stems stage. At both stages of development, in storage in multi-ply paper sacks, the greatest mass loss occurred at 48 h, decaying up to 120 hours, stabilizing at 192 hours. The peak respiratory rate increase occurred in 24 hours, coinciding with a change in pH (temperature and mean humidity was 23.5°C and 55%). No fungi or mold were detected, however, there was loss of color of the stems. The average yields of ethanolic extracts were equivalent (approximately 30%). Phenolic compounds and antioxidant activity were higher in secondary stems stage in up to 120 hours (AATt0 = 20%, AATt30 = 45%), decreasing at the end of the experiment (240 hours). The packaging used allows the commercialization of fresh stems of Equisetum for up to five days.

Keywords: paper sacks, phenolic content, antioxidant activity, medicinal plants, post-harvest, ecological packages, Equisetum

Procedia PDF Downloads 140
440 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia PDF Downloads 200
439 The Effect of Dry Matter Production Growth Rate, Temperature Rapeseed

Authors: Vadood Mobini, Mansoreh Agazadeh Shahrivar, Parvin Hashemi Gelenjkhanlo, Hassan Vazifah

Abstract:

Seed number is a function of dry matter accumulation, crop growth rate (CGR), photothermal quotient (PTQ) and temperature during a critical developmental period, which is around flowering in canola (Brassica napus L.). The objective of this experiment was to determine factors such as dry matter, CGR, temperature, and PTQ around flowering which affect seed number. The experiment was conducted at Agricultural Research Station of Gonbad, Iran, between 2005 and 2007. Two cultivars of canola (Hyola401 and RGS003), as subplots were grown at 5 sowing dates as main plots, spaced approximately 30 days apart, to obtain different environmental conditions during flowering. The experiment was arranged in two conditions, i.e., supplemental irrigation and rainfed. Seed number per unit area was a key factor for increasing seed yield. Late sowing dates made the critical period of flowering coincide with high temperatures, decreased days to the flowering, seed number per unit area and seed yield. Seed number was driven by the availability of carbohydrates around flowering. Seed number per unit area was maximized for the cultivars when exposed to the highest PTQ, and to the lowest temperature between the beginning of flowering to that of seed filling. The relationship of seed number with aboveground dry matter, CGR, temperature, and PTQ around flowering, over different environmental conditions, showed these variables were generally applicable to seed number determination.

Keywords: flowering, cultivar, seed filling, environmental conditions, seed yield

Procedia PDF Downloads 425