Search results for: matrix analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29267

Search results for: matrix analysis

29267 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC

Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad

Abstract:

In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.

Keywords: MAX phase, microstructures, composites, hardness, SEM

Procedia PDF Downloads 347
29266 Texture Analysis of Grayscale Co-Occurrence Matrix on Mammographic Indexed Image

Authors: S. Sushma, S. Balasubramanian, K. C. Latha

Abstract:

The mammographic image of breast cancer compressed and synthesized to get co-efficient values which will be converted (5x5) matrix to get ROI image where we get the highest value of effected region and with the same ideology the technique has been extended to differentiate between Calcification and normal cell image using mean value derived from 5x5 matrix values

Keywords: texture analysis, mammographic image, partitioned gray scale co-oocurance matrix, co-efficient

Procedia PDF Downloads 533
29265 The Second Smallest Eigenvalue of Complete Tripartite Hypergraph

Authors: Alfi Y. Zakiyyah, Hanni Garminia, M. Salman, A. N. Irawati

Abstract:

In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph.

Keywords: connectivity, graph, hypergraph, Laplacian matrix

Procedia PDF Downloads 488
29264 Conditions on Expressing a Matrix as a Sum of α-Involutions

Authors: Ric Joseph R. Murillo, Edna N. Gueco, Dennis I. Merino

Abstract:

Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α-involutory matrix or an α-involution if there exists an α in the field such that the square of the matrix is equal to αI, where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α-involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α. Meanwhile, if α is a negative real number, then a 2n-by-2n matrix A over R can be written as a sum of 2n-by-2n α-involutory matrices over R if and only the trace of the matrix is zero. Some other properties of α-involutory matrices are also determined

Keywords: α-involutory Matrices, sum of α-involutory Matrices, Trace, Matrix Theory

Procedia PDF Downloads 198
29263 On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents

Authors: Malika Yaici, Kamel Hariche

Abstract:

In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity.

Keywords: block vandermonde matrix, solvents, matrix polynomial, matrix inverse, matrix determinant, parallelization

Procedia PDF Downloads 240
29262 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 516
29261 Redundancy Component Matrix and Structural Robustness

Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song

Abstract:

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

Keywords: Structural Robustness, Structural Reliability, Redundancy Component, Redundancy Matrix

Procedia PDF Downloads 272
29260 The Norm, Singular Value and Condition Number Analysis for the Hadamard Matrices

Authors: Emine Tuğba Akyüz

Abstract:

In this study, the analysis of Hadamard matrices, which is a special type of matrix, was made under three headings: norms, singular values, condition number. Six norm types was applied to Hadamard matrices and the relationship between the results and the size of the matrix has been studied. As a result of the investigation when 2-norm was used on the problem Hx =f, the equation ‖x‖_2= ‖f‖_2/√n was shown (H is n-dimensional Hadamard matrix). Related with this, the relationship between the the singular value of H and 2-norm and eigenvalues was shown. Then, the evaluation of condition number for Hx =f was made.

Keywords: condition number, Hadamard matrix, norm, singular value

Procedia PDF Downloads 342
29259 On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix

Authors: Boris Melnikov, Dmitrii Chaikovskii, Elena Melnikova

Abstract:

The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix.

Keywords: optimization problems, DNA matrix, partially filled matrix, traveling salesman problem, heuristic algorithms

Procedia PDF Downloads 150
29258 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 143
29257 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames

Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar

Abstract:

Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.

Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping

Procedia PDF Downloads 149
29256 Plasticity in Matrix Dominated Metal-Matrix Composite with One Active Slip Based Dislocation

Authors: Temesgen Takele Kasa

Abstract:

The main aim of this paper is to suggest one active slip based continuum dislocation approach to matrix dominated MMC plasticity analysis. The approach centered the free energy principles through the continuum behavior of dislocations combined with small strain continuum kinematics. The analytical derivation of this method includes the formulation of one active slip system, the thermodynamic approach of dislocations, determination of free energy, and evolution of dislocations. In addition zero and non-zero energy dissipation analysis of dislocation evolution is also formulated by using varational energy minimization method. In general, this work shows its capability to analyze the plasticity of matrix dominated MMC with inclusions. The proposed method is also found to be capable of handling plasticity of MMC.

Keywords: active slip, continuum dislocation, distortion, dominated, energy dissipation, matrix dominated, plasticity

Procedia PDF Downloads 388
29255 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
29254 A Review on Aluminium Metal Matric Composites

Authors: V. Singh, S. Singh, S. S. Garewal

Abstract:

Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies.

Keywords: aluminum metal matrix composites, applications of aluminum metal matrix composites, lighting material processing of aluminum metal matrix composites

Procedia PDF Downloads 465
29253 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis

Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman

Abstract:

Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.

Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation

Procedia PDF Downloads 389
29252 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: matrix cooling, rib, heat transfer, gas turbine

Procedia PDF Downloads 460
29251 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 312
29250 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation

Procedia PDF Downloads 195
29249 Random Matrix Theory Analysis of Cross-Correlation in the Nigerian Stock Exchange

Authors: Chimezie P. Nnanwa, Thomas C. Urama, Patrick O. Ezepue

Abstract:

In this paper we use Random Matrix Theory to analyze the eigen-structure of the empirical correlations of 82 stocks which are consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 3 August 2009 to 26 August 2013. We apply the Marchenko-Pastur distribution of eigenvalues of a purely random matrix to investigate the presence of investment-pertinent information contained in the empirical correlation matrix of the selected stocks. We use hypothesised standard normal distribution of eigenvector components from RMT to assess deviations of the empirical eigenvectors to this distribution for different eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of eigenvectors of the empirical correlation matrix from RMT results. These preliminary results on the dynamics of asset price correlations in the NSE are important for improving risk-return trade-offs associated with Markowitz’s portfolio optimization in the stock exchange, which is pursued in future work.

Keywords: correlation matrix, eigenvalue and eigenvector, inverse participation ratio, portfolio optimization, random matrix theory

Procedia PDF Downloads 344
29248 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
29247 Matrix Method Posting

Authors: Varong Pongsai

Abstract:

The objective of this paper is introducing a new method of accounting posting which is called Matrix Method Posting. This method is based on the Matrix operation of pure Mathematics. Although, accounting field is classified as one of the social-science knowledge, many of accounting operations are placed by Mathematics sign and operation. Through the operation applying, it seems to be that the operations of Mathematics should be applied to accounting possibly. So, this paper tries to over-lap Mathematics logic to accounting logic smoothly. According to the context of discovery, deductive approach is employed to prove a simultaneously logical concept of both Mathematics and Accounting. The result proves that the Matrix can be placed to operate accounting perfectly, because Matrix and accounting logic also have a similarity concept which is balancing 2 sides during operations. Moreover, the Matrix posting also has a lot of benefit. It can help financial analyst calculating financial ratios comfortably. Furthermore, the matrix determinant which is a signature operation itself also helps auditors checking out the correction of clients’ recording. If the determinant is not equaled to 0, it will point out that the recording process of clients getting into the problem. Finally, the Matrix should be easily determining a concept of merger and consolidation far beyond the present day concept.

Keywords: matrix method posting, deductive approach, determinant, accounting application

Procedia PDF Downloads 367
29246 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method

Procedia PDF Downloads 308
29245 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method

Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari

Abstract:

The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.

Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed

Procedia PDF Downloads 492
29244 Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium

Authors: Radha H. R., Krupakara P. V.

Abstract:

Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy.

Keywords: aluminium 6061, corrosion, quartz, vortex

Procedia PDF Downloads 408
29243 Membership Surface and Arithmetic Operations of Imprecise Matrix

Authors: Dhruba Das

Abstract:

In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.

Keywords: imprecise number, imprecise vector, membership surface, imprecise matrix

Procedia PDF Downloads 386
29242 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials

Authors: Olusegun A. Afolabi, Ndivhuwo Ndou

Abstract:

Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.

Keywords: composite material, density, filler, matrix, percentage weight, volume fraction

Procedia PDF Downloads 67
29241 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.

Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening

Procedia PDF Downloads 445
29240 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 156
29239 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas

Authors: Mouhamadou Dosso

Abstract:

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue

Procedia PDF Downloads 94
29238 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 542