Conditions on Expressing a Matrix as a Sum of α -Involutions

Authors : Ric Joseph R. Murillo, Edna N. Gueco, Dennis I. Merino

Abstract : Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α -involutory matrix or an α -involution if there exists an α in the field such that the square of the matrix is equal to αI , where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α -involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α . Meanwhile, if α is a negative real number, then a 2n-by-2n matrix A over R can be written as a sum of 2n-by-2n α -involutory matrices over R if and only the trace of the matrix is zero. Some other properties of α -involutory matrices are also determined

Keywords : α -involutory Matrices, sum of α -involutory Matrices, Trace, Matrix Theory

Conference Title: ICLAA 2019: International Conference on Linear Algebra and Applications

Conference Location : London, United Kingdom

Conference Dates : January 21-22, 2019