Search results for: linear equations
4859 System of Linear Equations, Gaussian Elimination
Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali
Abstract:
In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.Keywords: direct, indirect, backward stage, forward stage
Procedia PDF Downloads 5944858 Second Order Analysis of Frames Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.Keywords: nonlinear, stability, buckling, modified newmark method
Procedia PDF Downloads 4254857 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program
Authors: F. Maass, P. Martin, J. Olivares
Abstract:
The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.Keywords: education, geogebra, ordinary differential equations, resonance
Procedia PDF Downloads 2444856 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 7404855 Closed Form Exact Solution for Second Order Linear Differential Equations
Authors: Saeed Otarod
Abstract:
In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra exampleKeywords: explicit, linear, differential, closed form
Procedia PDF Downloads 584854 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation
Abstract:
Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting
Procedia PDF Downloads 984853 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 5164852 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)
Authors: A. M. Sagir
Abstract:
The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.Keywords: block method, first order ordinary differential equations, linear multistep, self-starting
Procedia PDF Downloads 3054851 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)
Procedia PDF Downloads 4514850 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System
Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio
Abstract:
A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel
Procedia PDF Downloads 6684849 Multistage Adomian Decomposition Method for Solving Linear and Non-Linear Stiff System of Ordinary Differential Equations
Authors: M. S. H. Chowdhury, Ishak Hashim
Abstract:
In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the classical Adomian decomposition method (ADM) and the multi-stage Adomian decomposition method (MADM). The MADM is a technique adapted from the standard Adomian decomposition method (ADM) where standard ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The MADM is tested for several examples. Comparisons with an explicit Runge-Kutta-type method (RK) and the classical ADM demonstrate the limitations of ADM and promising capability of the MADM for solving stiff initial value problems (IVPs).Keywords: stiff system of ODEs, Runge-Kutta Type Method, Adomian decomposition method, Multistage ADM
Procedia PDF Downloads 4344848 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1854847 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations
Procedia PDF Downloads 1454846 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 4804845 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables
Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro
Abstract:
Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations
Procedia PDF Downloads 2564844 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method
Authors: Ritu Rani
Abstract:
In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development
Procedia PDF Downloads 1744843 A Variable Structural Control for a Flexible Lamina
Authors: Xuezhang Hou
Abstract:
A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators
Procedia PDF Downloads 844842 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial
Authors: Shubham Jaiswal
Abstract:
During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative
Procedia PDF Downloads 4444841 Symbolic Computation on Variable-Coefficient Non-Linear Dispersive Wave Equations
Authors: Edris Rawashdeh, I. Abu-Falahah, H. M. Jaradat
Abstract:
The variable-coefficient non-linear dispersive wave equation is investigated with the aid of symbolic computation. By virtue of a newly developed simplified bilinear method, multi-soliton solutions for such an equation have been derived. Effects of the inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed with the aid of the characteristic curve method and graphical analysis.Keywords: dispersive wave equations, multiple soliton solution, Hirota Bilinear Method, symbolic computation
Procedia PDF Downloads 4544840 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems
Authors: Harendra Singh, Rajesh Pandey
Abstract:
The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis
Procedia PDF Downloads 2964839 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.Keywords: block method, hybrid, linear multistep, self-starting, third order ordinary differential equations
Procedia PDF Downloads 2704838 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions
Authors: Fernando Maass, Pablo Martin, Jorge Olivares
Abstract:
Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations
Procedia PDF Downloads 1964837 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations
Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino
Abstract:
In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.Keywords: differential equations, dynamical systems, linear system, love dynamics
Procedia PDF Downloads 3534836 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 1484835 Linear fractional differential equations for second kind modified Bessel functions
Authors: Jorge Olivares, Fernando Maass, Pablo Martin
Abstract:
Fractional derivatives have been considered recently as a way to solve different problems in Engineering. In this way, second kind modified Bessel functions are considered here. The order α fractional differential equations of second kind Bessel functions, Kᵥ(x), are studied with simple initial conditions. The Laplace transform and Caputo definition of fractional derivatives are considered. Solutions have been found for ν=1/3, 1/2, 2/3, -1/3, -1/2 and (-2/3). In these cases, the solutions are the sum of two hypergeometric functions. The α fractional derivatives have been for α=1/3, 1/2 and 2/3, and the above values of ν. No convergence has been found for the integer values of ν Furthermore when α has been considered as a rational found m/p, no general solution has been found. Clearly, this case is more difficult to treat than those of first kind Bessel Function.Keywords: Caputo, modified Bessel functions, hypergeometric, linear fractional differential equations, transform Laplace
Procedia PDF Downloads 3414834 On Algebraic Structure of Improved Gauss-Seide Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence
Procedia PDF Downloads 4644833 Classification of Equations of Motion
Authors: Amritpal Singh Nafria, Rohit Sharma, Md. Shami Ansari
Abstract:
Up to now only five different equations of motion can be derived from velocity time graph without needing to know the normal and frictional forces acting at the point of contact. In this paper we obtained all possible requisite conditions to be considering an equation as an equation of motion. After that we classified equations of motion by considering two equations as fundamental kinematical equations of motion and other three as additional kinematical equations of motion. After deriving these five equations of motion, we examine the easiest way of solving a wide variety of useful numerical problems. At the end of the paper, we discussed the importance and educational benefits of classification of equations of motion.Keywords: velocity-time graph, fundamental equations, additional equations, requisite conditions, importance and educational benefits
Procedia PDF Downloads 7874832 Representation of the Solution of One Dynamical System on the Plane
Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox
Abstract:
This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system
Procedia PDF Downloads 1934831 Weak Solutions Of Stochastic Fractional Differential Equations
Authors: Lev Idels, Arcady Ponosov
Abstract:
Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.Keywords: delay equations, operator methods, stochastic noise, weak solutions
Procedia PDF Downloads 2084830 Determination of the Axial-Vector from an Extended Linear Sigma Model
Authors: Tarek Sayed Taha Ali
Abstract:
The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic
Procedia PDF Downloads 444