Search results for: guided imagery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 999

Search results for: guided imagery

969 Design of an Acoustic Imaging Sensor Array for Mobile Robots

Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta

Abstract:

Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.

Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming

Procedia PDF Downloads 379
968 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 182
967 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 231
966 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach

Authors: K. V. F. Fatokun, P. A. Eniayeju

Abstract:

This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.

Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest

Procedia PDF Downloads 305
965 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation

Authors: Desmond Agbolade Ademola

Abstract:

This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.

Keywords: momentum, physical entanglement, wavefunction, uncertainty

Procedia PDF Downloads 262
964 Computed Tomography Guided Bone Biopsies: Experience at an Australian Metropolitan Hospital

Authors: K. Hinde, R. Bookun, P. Tran

Abstract:

Percutaneous CT guided biopsies provide a fast, minimally invasive, cost effective and safe method for obtaining tissue for histopathology and culture. Standards for diagnostic yield vary depending on whether the tissue is being obtained for histopathology or culture. We present a retrospective audit from Western Health in Melbourne Australia over a 12-month period which aimed to determine the diagnostic yield, technical success and complication rate for CT guided bone biopsies and identify factors affecting these results. The digital imaging storage program (Synapse Picture Archiving and Communication System – Fujifilm Australia) was analysed with key word searches from October 2015 to October 2016. Nineteen CT guided bone biopsies were performed during this time. The most common referring unit was oncology, work up imaging included CT, MRI, bone scan and PET scan. The complication rate was 0%, overall diagnostic yield was 74% with a technical success of 95%. When performing biopsies for histologic analysis diagnostic yield was 85% and when performing biopsies for bacterial culture diagnostic yield was 60%. There was no significant relationship identified between size of lesion, distance of lesion to skin, lesion appearance on CT, the number of samples taken or gauge of needle to diagnostic yield or technical success. CT guided bone biopsy at Western Health meets the standard reported at other major clinical centres for technical success and safety. It is a useful investigation in identification of primary malignancy in distal bone metastases.

Keywords: bone biopsy, computed tomography, core biopsy, histopathology

Procedia PDF Downloads 176
963 A Methodological Approach to Development of Mental Script for Mental Practice of Micro Suturing

Authors: Vaikunthan Rajaratnam

Abstract:

Intro: Motor imagery (MI) and mental practice (MP) can be an alternative to acquire mastery of surgical skills. One component of using this technique is the use of a mental script. The aim of this study was to design and develop a mental script for basic micro suturing training for skill acquisition using a low-fidelity rubber glove model and to describe the detailed methodology for this process. Methods: This study was based on a design and development research framework. The mental script was developed with 5 expert surgeons performing a cognitive walkthrough of the repair of a vertical opening in a rubber glove model using 8/0 nylon. This was followed by a hierarchal task analysis. A draft script was created, and face and content validity assessed with a checking-back process. The final script was validated with the recruitment of 28 participants, assessed using the Mental Imagery Questionnaire (MIQ). Results: The creation of the mental script is detailed in the full text. After assessment by the expert panel, the mental script had good face and content validity. The average overall MIQ score was 5.2 ± 1.1, demonstrating the validity of generating mental imagery from the mental script developed in this study for micro suturing in the rubber glove model. Conclusion: The methodological approach described in this study is based on an instructional design framework to teach surgical skills. This MP model is inexpensive and easily accessible, addressing the challenge of reduced opportunities to practice surgical skills. However, while motor skills are important, other non-technical expertise required by the surgeon is not addressed with this model. Thus, this model should act a surgical training augment, but not replace it.

Keywords: mental script, motor imagery, cognitive walkthrough, verbal protocol analysis, hierarchical task analysis

Procedia PDF Downloads 76
962 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 330
961 Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria

Authors: Akpokiere Ugbede Roseline

Abstract:

Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry.

Keywords: instructional strategy, practical chemistry, learning outcomes, pre-service teachers

Procedia PDF Downloads 72
960 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata

Authors: Tanmay Bisen, Aastha Shayla

Abstract:

This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.

Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection

Procedia PDF Downloads 25
959 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics

Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke

Abstract:

Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.

Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction

Procedia PDF Downloads 39
958 The Usefulness and Limitations of Manual Aspiration Immediately after Pneumothorax Complicating Percutaneous CT Guided Lung Biopsies: A Retrospective 9-Year Review from a Large Tertiary Centre

Authors: Niall Fennessy, Charlotte Yin, Vineet Gorolay, Michael Chan, Ilias Drivas

Abstract:

Background: The aim of this study was to evaluate the effect of manual aspiration of air from the pleural cavity in mitigating the need for chest drain placement after a CT-guided lung biopsy. Method: This is a single institution retrospective review of CT-guided lung biopsies performed on 799 patients between September 2013 and May 2021 in a major tertiary hospital. Percutaneous manual aspiration of air was performed in 104/306 patients (34%) with pneumothoraxes as a preventative measure. Simple and multivariate analysis was performed to identify independent risk factors (modifiable and nonmodifiable) for the success of manual aspiration in mitigating the need for chest drain insertion. Results: The overall incidence of pneumothorax was 37% (295/799). Chest drains were inserted for 81/295 (27%) of the pneumothoraxes, representing 81/799 (10%) of all CT-guided lung biopsies. Of patients with pneumothoraces, 104 (36%) underwent percutaneous aspiration via either the coaxial guide needle or an 18 or 20G intravenous catheter attached to a three-way stopcock and syringe. Amongst this group, 13 patients (13%) subsequently required chest drain insertion. The success of percutaneous aspiration in avoiding subsequent pleural drain insertion decreased with aspiration volume >500mL, radial pneumothorax depth >3cm, increased subpleural depth of the lesion, and the presence of background emphysema.

Keywords: computed tomography, lung biopsy, pneumothorax, manual aspiration, chest drainage

Procedia PDF Downloads 150
957 Translation, Cross-Cultural Adaption, and Validation of the Vividness of Movement Imagery Questionnaire 2 (VMIQ-2) to Classical Arabic Language

Authors: Majid Alenezi, Abdelbare Algamode, Amy Hayes, Gavin Lawrence, Nichola Callow

Abstract:

The purpose of this study was to translate and culturally adapt the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) from English to produce a new Arabic version (VMIQ-2A), and to evaluate the reliability and validity of the translated questionnaire. The questionnaire assesses how vividly and clearly individuals are able to imagine themselves performing everyday actions. Its purpose is to measure individuals’ ability to conduct movement imagery, which can be defined as “the cognitive rehearsal of a task in the absence of overt physical movement.” Movement imagery has been introduced in physiotherapy as a promising intervention technique, especially when physical exercise is not possible (e.g. pain, immobilisation.) Considerable evidence indicates movement imagery interventions improve physical function, but to maximize efficacy it is important to know the imagery abilities of the individuals being treated. Given the increase in the global sharing of knowledge it is desirable to use standard measures of imagery ability across language and cultures, thus motivating this project. The translation procedure followed guidelines from the Translation and Cultural Adaptation group of the International Society for Pharmacoeconomics and Outcomes Research and involved the following phases: Preparation; the original VMIQ-2 was adapted slightly to provide additional information and simplified grammar. Forward translation; three native speakers resident in Saudi Arabia translated the original VMIQ-2 from English to Arabic, following instruction to preserve meaning (not literal translation), and cultural relevance. Reconciliation; the project manager (first author), the primary translator and a physiotherapist reviewed the three independent translations to produce a reconciled first Arabic draft of VMIQ-2A. Backward translation; a fourth translator (native Arabic speaker fluent in English) translated literally the reconciled first Arabic draft to English. The project manager and two study authors compared the English back translation to the original VMIQ-2 and produced the second Arabic draft. Cognitive debriefing; to assess participants’ understanding of the second Arabic draft, 7 native Arabic speakers resident in the UK completed the questionnaire, and rated the clearness of the questions, specified difficult words or passages, and wrote in their own words their understanding of key terms. Following review of this feedback, a final Arabic version was created. 142 native Arabic speakers completed the questionnaire in community meeting places or at home; a subset of 44 participants completed the questionnaire a second time 1 week later. Results showed the translated questionnaire to be valid and reliable. Correlation coefficients indicated good test-retest reliability. Cronbach’s a indicated high internal consistency. Construct validity was tested in two ways. Imagery ability scores have been found to be invariant across gender; this result was replicated within the current study, assessed by independent-samples t-test. Additionally, experienced sports participants have higher imagery ability than those less experienced; this result was also replicated within the current study, assessed by analysis of variance, supporting construct validity. Results provide preliminary evidence that the VMIQ-2A is reliable and valid to be used with a general population who are native Arabic speakers. Future research will include validation of the VMIQ-2A in a larger sample, and testing validity in specific patient populations.

Keywords: motor imagery, physiotherapy, translation and validation, imagery ability

Procedia PDF Downloads 302
956 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 158
955 Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task

Authors: Jonathan Ham, Christopher Koch

Abstract:

There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant.

Keywords: odor-color associations, odor imagery, visual attention, inhibition

Procedia PDF Downloads 144
954 Simplifying Writing Composition to Assist Students in Rural Areas: An Experimental Study for the Comparison of Guided and Unguided Instruction

Authors: Neha Toppo

Abstract:

Method and strategies of teaching instruction highly influence learning of students. In second language teaching, number of ways and methods has been suggested by different scholars and researchers through times. The present article deals with the role of teaching instruction in developing compositional ability of students in writing. It focuses on the secondary level students of rural areas, whose exposure to English language is limited and they face challenges even in simple compositions. The students till high school suffer with their disability in writing formal letter, application, essay, paragraph etc. They face problem in note making, writing answers in examination using their own words and depend fully on rote learning. It becomes difficult for them to give language to their own ideas. Teaching writing composition deserves special attention as writing is an integral part of language learning and students at this level are expected to have sound compositional ability for it is useful in numerous domains. Effective method of instruction could help students to learn expression of self, correct selection of vocabulary and grammar, contextual writing, composition of formal and informal writing. It is not limited to school but continues to be important in various other fields outside the school such as in newspaper and magazine, official work, legislative work, material writing, academic writing, personal writing, etc. The study is based on the experimental method, which hypothesize that guided instruction will be more effective in teaching writing compositions than usual instruction in which students are left to compose by their own without any help. In the test, students of one section are asked to write an essay on the given topic without guidance and another section are asked to write the same but with the assistance of guided instruction in which students have been provided with a few vocabulary and sentence structure. This process is repeated in few more schools to get generalize data. The study shows the difference on students’ performance using both the instructions; guided and unguided. The conclusion of the study is followed by the finding that writing skill of the students is quite poor but with the help of guided instruction they perform better. The students are in need of better teaching instruction to develop their writing skills.

Keywords: composition, essay, guided instruction, writing skill

Procedia PDF Downloads 252
953 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle

Authors: Bivek Bhusal, Ana Legrand

Abstract:

Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.

Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans

Procedia PDF Downloads 25
952 Ultrasound Guided Treatment of Carpal Tunnel Syndrome

Authors: Kazem Shakouri, Alireza Pishgahi, Homayoun Sadeghi-bBazargani, Shahla Dareshiri

Abstract:

Introduction: Carpal Tunnel Syndrome has numerous nonsurgical treatments including splint, physical therapy and corticosteroid injections. Aim: The purpose of this study was to evaluate the effectiveness of an ultrasound guided treatment procedure, for individuals with severe carpal tunnel syndrome. Materials and Method: 20 patients with an electrodiagnostic evidence of severe carpal tunnel syndrome were treated by an office-based ultrasound guided procedure (combination of percutaneous needle release of carpal tunnel and corticosteroid injection). Electrodiagnostic (nerve conduction study), clinical (Boston Carpal Tunnel Questionnaire, grip strength) and ultrasonic (median nerve and carpal tunnel cross-sectional area) measurements were recorded at baseline and one month after intervention. Results: Our preliminary data analysis showed that in one month follow up, patients had a significantly smaller cross-sectional area of the median nerve compared to pretreatment values (mean difference 0.06; 95%CI: 0.02-0.1; p < 0.001). In addition, patients had significantly less functional impairment (mean difference 35; 95% CI:28.7-43.4 ; p < 0.001), and an improved hand grip strength in one month follow up (mean difference 5.4; 95%CI: 3.1-7.8; p < 0.001;). There were no significant complications. Conclusion: Patients with severe carpal tunnel syndrome, who are candidates for surgical intervention, can consider office-based ultrasound guided needle release of carpal tunnel as an alternative safe treatment.

Keywords: Carpal Tunnel Syndrome, needle release, pain, ultrasound

Procedia PDF Downloads 218
951 Co-Registered Identification and Treatment of Skin Tumor with Optical Coherence Tomography-Guided Laser Therapy

Authors: Bo-Huei Huang, Chih-Hsun Yang, Meng-Tsan Tsai

Abstract:

Optical coherence tomography (OCT) enables to provide advantages of noninvasive imaging, high resolution, and high imaging speed. In this study, we integrated OCT and a CW laser for tumor diagnosis and treatment. The axial and transverse resolutions of the developed OCT system are 3 μm and 1 μm, respectively. The frame rate of OCT system is 30 frames/s. In this study, the tumor cells were implanted into the mice skin and scanned by OCT to observe the morphological and angiographic changes. With OCT imaging, 3D microstructures and skin angiography of mice skin can be simultaneously acquired, which can be utilized for identification of the tumor distribution. Then, the CW laser beam can be accurately controlled to expose on the center of the tumor, according to the OCT results. Moreover, OCT was used to monitor the induced photothermolysis and to evaluate the treatment outcome. The results showed that OCT-guided laser therapy could efficiently improve the treatment outcome and the extra damage induced by CW can be greatly reduced. Such OCT-guided laser therapy system could be a potential tool for dermatological applications.

Keywords: optical coherence tomography, laser therapy, skin tumor, position guide

Procedia PDF Downloads 249
950 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 245
949 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 80
948 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 92
947 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 475
946 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 107
945 Endoscopic Ultrasound-Guided Choledochoduodenostomy in an Advanced Extrahepatic Cholangiocarcinoma

Authors: Diego Carrasco, Catarina Freitas, Hugo Rio Tinto, Ricardo Rio Tinto, Nuno Couto, Joaquim Gago, Carlos Carvalho

Abstract:

Introduction: Endoscopic ultrasound-guided choledochoduodenostomy (EUS-CD) to drain the gallbladder can be a palliative care procedure for non-surgical oncologic patients with cholelithiasis and cholangitis process. Case description: A 59-years old Caucasian male diagnosed with extrahepatic cholangiocarcinoma with multiple liver, lung and peritoneum metastasis, unresponsive to treatment with gemcitabine/cisplatin, presented in the institution with fever, hypotension, and severe upper right abdominal pain secondary to cholelithiasis and cholangitis process. The patient was admitted and started on large spectrum antibiotics plus fluid-challenge. Afterward, a percutaneous transhepatic biliary drainage (PTBD) was performed to drain the gallbladder. This procedure temporarily stabilized the patient. However, the definitive solution required gallbladder removal. Since the patient exhibited an advanced oncologic disease and poor response to the chemotherapy, he was not a candidate for surgical intervention. Diagnostic Pathways: A self-expanding metal stent was placed from the duodenum into the bile duct by endoscopic ultrasound-guided. The stent allowed efficient drainage of the contrast from the gallbladder at the end of the endoscopic procedure. Conclusion and Discussion: The stent allowed efficient drainage of the contrast from the gallbladder at the end of the endoscopic procedure and successfully reversed the cholangitis process. EUS-CD is an effective and safe technique and can be used as a palliative care procedure for non-surgical oncologic patients.

Keywords: palliative care, cholangiocarcinoma, choledochoduodenostomy, endoscopic ultrasound-guided

Procedia PDF Downloads 155
944 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 212
943 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 28
942 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 70
941 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 105
940 An Animation-Based Resource for Screening Emotional and Behavioural Distress in Children Aged 6 to 12

Authors: Zoe Lynch, Kirsty Zieschank

Abstract:

There are several factors that compromise the utility and wide-spread use of existing emotional and behavioural distress screening instruments. Some of these factors include lengthy administration times, high costs, feasibility issues, and a lack of self-report options for children under 12 years of age. This animation-based resource was developed to overcome as many of these factors as possible. Developed for educators and medical and mental health professionals, this resource offers children a self-guided mechanism for reporting any current emotional and behavioural distress. An avatar assistant, selected by the child, accompanies them through each stage of the screening process, offering further instruction if prompted. Children enter their age and gender before viewing comparative animations conveying common childhood emotional and behavioural difficulties. The child then selects the most relatable animations, along with the frequency with which they experience the depicted emotions. From a perspective of intellectual development, an engaging, animated format means that outcomes will not be constrained by children’s reading, writing, cognitive, or verbal expression abilities. Having been user-tested with children aged 6 to 12, this resource shows promising results as a self-guided screening instrument.

Keywords: animation-based screening instrument, mental health, primary-aged children, self-guided

Procedia PDF Downloads 129