Search results for: gap distribution function
9533 A Flexible Pareto Distribution Using α-Power Transformation
Authors: Shumaila Ehtisham
Abstract:
In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution
Procedia PDF Downloads 2159532 The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data
Authors: K. A. Adepoju, O. I. Shittu, A. U. Chukwu
Abstract:
In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated.Keywords: fisher-snedecor distribution, beta-f distribution, outlier, maximum likelihood method
Procedia PDF Downloads 3469531 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 5019530 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution
Authors: Md. Rashidul Hasan, Atikur Rahman Baizid
Abstract:
The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function
Procedia PDF Downloads 3839529 A Distribution Free Test for Censored Matched Pairs
Authors: Ayman Baklizi
Abstract:
This paper discusses the problem of testing hypotheses about the lifetime distributions of a matched pair based on censored data. A distribution free test based on a runs statistic is proposed. Its null distribution and power function are found in a simple convenient form. Some properties of the test statistic and its power function are studied.Keywords: censored data, distribution free, matched pair, runs statistics
Procedia PDF Downloads 2879528 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas
Authors: Warda Nasir, M. N. S. Qureshi
Abstract:
Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas
Procedia PDF Downloads 3139527 Parameters Estimation of Power Function Distribution Based on Selective Order Statistics
Authors: Moh'd Alodat
Abstract:
In this paper, we discuss the power function distribution and derive the maximum likelihood estimator of its parameter as well as the reliability parameter. We derive the large sample properties of the estimators based on the selective order statistic scheme. We conduct simulation studies to investigate the significance of the selective order statistic scheme in our setup and to compare the efficiency of the new proposed estimators.Keywords: fisher information, maximum likelihood estimator, power function distribution, ranked set sampling, selective order statistics sampling
Procedia PDF Downloads 4619526 Application of Hyperbinomial Distribution in Developing a Modified p-Chart
Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman
Abstract:
Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution
Procedia PDF Downloads 2799525 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 3479524 The Modality of Multivariate Skew Normal Mixture
Authors: Bader Alruwaili, Surajit Ray
Abstract:
Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode
Procedia PDF Downloads 4879523 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions
Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani
Abstract:
The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.Keywords: estimation, bandwidth, mean square error, cumulative distribution function
Procedia PDF Downloads 5809522 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution
Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra
Abstract:
It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds
Procedia PDF Downloads 2439521 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 1029520 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field
Authors: Taha Zakaraia Abdel Wahid
Abstract:
The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions
Procedia PDF Downloads 4959519 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 3239518 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 4409517 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 859516 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions
Authors: Debasis Sengupta, Sudipta Das
Abstract:
The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.Keywords: DMRL, IMRL, reliability bounds, hazard functions
Procedia PDF Downloads 3979515 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation
Procedia PDF Downloads 5039514 Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31
Authors: Seon Soon Choi
Abstract:
Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode.Keywords: cumulative distribution function, fatigue crack propagation, grown crack size, magnesium alloys, maximum fatigue load
Procedia PDF Downloads 2879513 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation
Authors: Serge B. Provost, Yishan Zhang
Abstract:
A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation
Procedia PDF Downloads 1629512 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm
Procedia PDF Downloads 3339511 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation
Authors: P. Selyshchev
Abstract:
We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.Keywords: irradiation, primary defects, interaction, fluctuations
Procedia PDF Downloads 3419510 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys
Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri
Abstract:
We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.Keywords: full-potential KKR-green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect
Procedia PDF Downloads 2749509 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 3069508 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 2019507 A Proposed Mechanism for Skewing Symmetric Distributions
Authors: M. T. Alodat
Abstract:
In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.Keywords: normal distribution, moments, Fisher information, symmetric distributions
Procedia PDF Downloads 6559506 A Unification and Relativistic Correction for Boltzmann’s Law
Authors: Lloyd G. Allred
Abstract:
The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.Keywords: cosmology, EMP, plasma physics, relativity
Procedia PDF Downloads 2179505 Software Reliability Prediction Model Analysis
Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability
Procedia PDF Downloads 4649504 Variations in the Frequency-Magnitude Distribution with Depth in Kalabsha Area, Aswan, South Egypt
Authors: Ezzat Mohamed El-Amin
Abstract:
Mapping the earthquake-size distribution in various tectonic regimes on a local to regional scale reveals statistically significant variations in the range of at least 0.4 to 2.0 for the b-value in the frequency-magnitude distribution. We map the earthquake frequency–magnitude distribution (b value) as a function of depth in the Reservoir Triggered Seismicity (RTS) region in Kalabsha region, in south Egypt. About 1680 well-located events recorded during 1981–2014 in the Kalabsha region are selected for the analysis. The earthquake data sets are separated in 5 km zones from 0 to 25 km depth. The result shows a systematic decrease in b value up to 12 km followed by an increase. The increase in b value is interpreted to be caused by the presence of fluids. We also investigate the spatial distribution of b value with depth. Significant variations in the b value are detected, with b ranging from b 0.7 to 1.19. Low b value areas at 5 km depth indicate localized high stresses which are favorable for future rupture.Keywords: seismicity, frequency-magnitude, b-value, earthquake
Procedia PDF Downloads 555