Search results for: fatigue design truck
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12605

Search results for: fatigue design truck

12335 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics

Authors: Hussain Al-Baghli

Abstract:

In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties

Procedia PDF Downloads 147
12334 Museums: The Roles of Lighting in Design

Authors: Fernanda S. Oliveira

Abstract:

The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.

Keywords: daylight, comfort, museums, luminance, visitor

Procedia PDF Downloads 446
12333 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: crack initiation, fatigue reliability, inspection planning, welded joints

Procedia PDF Downloads 329
12332 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 419
12331 Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy

Authors: Sanjeev Kumar, Vikas Kumar

Abstract:

Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen.

Keywords: IN718 superalloy, nanostructure, USP, LCF life

Procedia PDF Downloads 84
12330 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: Alaa Al-Mosawe, Riadh Al-Mahaidi

Abstract:

Carbon fiber reinforced polymers have been wildly used to strengthen steel structural elements. Those structural elements are normally subjected to static, dynamic, fatigue loadings during their life time. CFRP laminate is one of the common methods to strengthen these structures under the subjected loads. A number of researches have been focused on the bond characteristics of CFRP sheets to steel members under static, dynamic and fatigue loadings. There is a lack in understanding the behavior of the CFRP laminates under impact loading. This paper is showing the effect of high load rate on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joint by using Araldite 420 epoxy. The results showed that applying high load rate has a significant effect on the bond strength while a little influence on the effective bond length.

Keywords: adhesively bonded joints, bond strength, CFRP laminate, impact tensile loading

Procedia PDF Downloads 328
12329 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application

Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka

Abstract:

Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.

Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET

Procedia PDF Downloads 275
12328 Healthcare Professional’s Well-Being: Case Study of Two Care Units in a Big Hospital in Canada

Authors: Zakia Hammouni

Abstract:

Healthcare professionals’ well-being is becoming a priority during this Covid-19 pandemic due to stress, fatigue, and workload. Well before this pandemic, contemporary hospitals are endowed with environmental attributes that contribute to achieving well-being within their environment with the emphasis on the patient. The patient-centered care approach has been followed by the patient-centered design approach. Studies that have focused on the physical environment in hospitals have dealt with the patient's recovery process and his well-being. Prior scientific literature has placed less emphasis on the healthcare professionals’ interactions within the physical environment and to guide hospital designers to make evidence-based design choices to meet the needs and expectations of hospital users by considering, in addition to patients, healthcare professionals. This paper examines these issues related to the daily stress of professionals who provide care in a hospital environment. In this exploratory study, the interest was to grasp the issues related to this environment and explores the current realities of newly built hospitals based on design approaches and what attributes of the physical setting support healthcare professional’s well-being. Within a constructivist approach, this study was conducted in two care units in a new hospital in a big city in Canada before the Covid-19 pandemic (august 2nd to November 2nd 2018). A spatial evaluation of these care units allowed us to understand the interaction of health professionals in their work environment, to understand the spatial behavior of these professionals, and the narratives from 44 interviews of various healthcare professionals. The mental images validated the salient components of the hospital environment as perceived by these healthcare professionals. Thematic analysis and triangulation of the data set were conducted. Among the key attributes promoting the healthcare professionals’ well-being as revealed by the healthcare professionals are the overall light-color atmosphere in the hospital and care unit, particularly in the corridors and public areas of the hospital, the maintenance and cleanliness. The presence of the art elements also brings well-being to the health professionals as well as panoramic views from the staff lounge and corridors of the care units or elevator lobbies. Despite the overall positive assessment of this environment, some attributes need to be improved to ensure the well-being of healthcare professionals and to provide them with a restructuring environment. These are the supply of natural light, softer colors, sufficient furniture, comfortable seating in the restroom, and views, which are important in allowing these healthcare professionals to recover from their work stress. Noise is another attribute that needs to be further improved in the hospital work environment, especially in the nursing workstations and consultant's room. In conclusion, this study highlights the importance of providing healthcare professionals with work and rest areas that allow them to resist the stress they face, particularly during periods of extreme stress and fatigue such as a Covid-19 pandemic.

Keywords: healthcare facilities, healthcare professionals, physical environment, well-being

Procedia PDF Downloads 98
12327 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 138
12326 Fan Engagement Sustainability and Fan Fatigue: Understanding the Role of Marvel Franchise for Fans

Authors: Mitrajit Biswas

Abstract:

This paper is trying to understand the issues related to maintaining a fan base over a period of time. The paper would be trying to look into how the fan base can be actually engaged. That is what are the attributes of keeping a fan base interested and not feeling fatigued or tired. It would also try to understand that what are the key elements required for a franchise to be active and keep the fans engaged. The paper would look to understand the primary elements of a franchise like Marvel to keep the fans engaged for such a long period of time. This will help to improve the scope of literature on consumer engagement and consumption behaviour in modern times of unpredictability. It will also help to understand how the consumers take in a longer period of engagement. This would help to understand that despite huge success and investment in fan engagement and what could be the possible reasons for disengagement? This would include in-depth interviews with a global sample of around 50 people, which would be connected through purposive, convenient, and snowball sampling. It will help to understand whether the customer lifetime value as a theory can be sustained based on customer relationship management. If yes, how can products from certain companies predict and keep up the strategy for the prediction of the consumer engagement process?

Keywords: consumption, fatigue, brand loyalty, sustainable consumption

Procedia PDF Downloads 44
12325 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 73
12324 Engine with Dual Helical Crankshaft System Operating at an Overdrive Gear Ratio

Authors: Anierudh Vishwanathan

Abstract:

This paper suggests a new design of the crankshaft system that would help to use a low revving engine for applications requiring the use of a high revving engine operating at the same power by converting the extra or unnecessary torque obtained from a low revving engine into angular velocity of the crankshaft of the engine hence, improve the fuel economy of the vehicle because of the fact that low revving engines run more effectively on lean air fuel mixtures accompanied with less wear and tear of the engine due to lesser rubbing of the piston rings with the cylinder walls. If the crankshaft with the proposed design is used in a low revving engine, then it will give the same torque and speed as that given by a high revving engine operating at the same power but the new engine will give better fuel economy. Hence the new engine will give the benefits of a low revving engine as well as a high revving engine. The proposed crankshaft design will be achieved by changing the design of the crankweb in such a way that it functions both as a counterweight as well as a helical gear that can transfer power to the secondary gear shaft which will be incorporated in the crankshaft system. The crankshaft and the secondary gear shaft will be operating at an overdrive ratio. The crankshaft will now be a two shaft system instead of a single shaft system. The newly designed crankshaft will be mounted on the bearings instead of being connected to the flywheel of the engine. This newly designed crankshaft will transmit power to the secondary shaft which will rotate the flywheel and then the rotary motion will be transmitted to the transmission system as usual. In this design, the concept of power transmission will be incorporated in the crankshaft system. In the paper, the crankshaft and the secondary shafts have been designed in such a way that at any instant of time only half the number of crankwebs will be meshed with the secondary shaft. For example, during one revolution of the crankshaft, if for the first half of revolution; first, second, seventh and eighth crankwebs are meshing with the secondary shaft then for the next half revolution, third, fourth, fifth and sixth crankwebs will mesh with the secondary shaft. This paper also analyses the proposed crankshaft design for safety against fatigue failure. Finite element analysis of the crankshaft has been done and the resultant stresses have been calculated.

Keywords: low revving, high revving, secondary shaft, partial meshing

Procedia PDF Downloads 247
12323 Utilization of Composite Components for Land Vehicle Systems: A Review

Authors: Kivilcim Ersoy, Cansu Yazganarikan

Abstract:

In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.

Keywords: land vehicle, composite, light-weight design, armored vehicle

Procedia PDF Downloads 437
12322 Effect of Pregnenolone Supplement on Biological Variables after Plyometric Training for Volleyball Players

Authors: Menan M. Elsayed, Hussein A. Heshmat

Abstract:

The aim of the study is to determine the effect of 100 mg/d Pregnenolone on biological variables after plyometric training for volleyball players. Methods: 15 male volleyball players participated in this study. Serum levels of testosterone, creatine phosphokinase (CPK), lactate, and glucose were measured before and post-exercise. Results: Testosterone was not altered, while creatine phosphokinase (CPK), lactate, and glucose levels significantly decreased. It is recommended to use Pregnenolone administration to decreased muscle damage and delayed fatigue for volleyball players after plyometric training. In conclusion, this study demonstrated that oral Pregnenolone administration of 100 mg/d might decrease muscle damage and delayed fatigue which may affect positively the volleyball players after a plyometric training bout.

Keywords: biological variables, plyometric exercise program, pregnenolone, volleyball player

Procedia PDF Downloads 194
12321 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 86
12320 Aeronautical Noise Management inside an Aerodrome: Analysis of Sound Exposure on Aviation Professional’s Health

Authors: Rafael Felipe Guatura da Silva, José Luis Gomes da Silva, Luiz Antonio, Ferreira Perrone de Brito

Abstract:

Noise can cause serious damage to human health, such as hearing loss, stress, irritability, fatigue, and others. Aviation is a place where your entire process should be work out with the utmost attention and commitment of human resources, thus the need to study the effects of noise in this sector, as aeronautical noise levels are high. This study aimed to evaluate the impact of noise pollution on the performance of professionals regarding the fatigue generated by aeronautical noise and time to noise exposure. The methodology used consists of measurements of sound pressure levels at 42 points of the aerodrome. The selected points are located inside the hangars and outside the airfield hangars. All points chosen are close to the professionals' work areas, seeking to identify the sound pressure levels to which they submitted. The other part of the research used the principle on the application of a self-report questionnaire to a sample of 207 people working inside the aerodrome. The 207 professionals surveyed consist of aircraft mechanics, pilots, maintenance managers, and administrative professionals. The questionnaire was intended to evaluate the knowledge that professionals have about health risks caused by sound exposure as well as to identify diseases that professionals have, and that may be associated with exposure to high levels of sound pressure. Preliminary results identify points with sound pressure levels of up to 91.7 dB, thus highlighting the need for the use of personal protective equipment that reduces noise exposure. It was also identified a large number of professionals who are bothered by the sound exposure and approximately 25% of professionals interviewed reported having a hearing disorder.

Keywords: aeronautical noise, fatigue, noise and health, noise management

Procedia PDF Downloads 118
12319 Using Mind Mapping and Morphological Analysis within a New Methodology for Teaching Students of Products’ Design

Authors: Kareem Saber

Abstract:

Many products’ design instructors search for how to help students to develop their designs simply by reducing design stages and extrapolating simple design process forms to achieve design creativity. So, the researcher extrapolated a new design process form called “hierarchical design” which reduced design process into three stages and he had tried that methodology on about two hundred students. That trial had led to great results as students could develop their designs which characterized by creativity and innovation. That proved the success and effectiveness of the proposed methodology.

Keywords: mind mapping, morphological analysis, product design, design process

Procedia PDF Downloads 144
12318 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging

Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho

Abstract:

Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.

Keywords: modal testing, natural frequency, vibration aging, welded structure

Procedia PDF Downloads 459
12317 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 431
12316 Formulation of Building Design Principles for Little People in Hong Kong

Authors: Yung Yau

Abstract:

'Little people' are those who have extremely short stature as they suffer from rare bone diseases. They are commonly known as 'dwarves' or 'people with dwarfism'. Dwarfism is generally regarded as a type of rare disease for its extremely small odds (~1 in 15,000). On account of its rarity, dwarfism, unlike other types of disability, has attracted relatively little attention from the general public and in various academic fields (e.g. architecture, psychology and sociology) except medical science. In view of the extant research gaps, this study aims to investigate the physical barriers facing the little people in the built environment in Hong Kong. Between November 2017 and July 2018, ten little people or their family members participated in in-depth interviews. Responses of the interviewees were transcribed (i.e., speech being converted to text word for word). Interview data were then analyzed using the interpretative phenomenological analysis methodology developed by J. Smith and others in 2009. The findings of the project reveal that although Hong Kong's built environment has been designed barrier-free pursuant to the prevailing building standards, those standards do not cater to the special anthropometric characteristics of little people. As a result, little people face a lot of challenges when using built facilities. For example, most water closets, urinals, and wash hand basins are not fit for little people's use. As indicated by the project findings, we are still far away from providing a discrimination-free and barrier-free living environment for the little people in Hong Kong. To make Hong Kong society more inclusive to the little people, there is a need for further tailored building design. A set of building design principles for better inclusion of the little people in our society are highlighted. These principles include 'the building design should accommodate individuals with different heights' and 'the building design should allow individuals to use comfortably and efficiently with a minimum of fatigue'. At the end of the paper, the author also calls for an agenda for further studies. For instance, we need an anthropometric study on little people for developing practical building design guidelines.

Keywords: dwarfism, little people, inclusive buildings, people with disabilities, social sustainability

Procedia PDF Downloads 94
12315 Evaluation of Thermal Barrier Coating According to Temperature and Curvature

Authors: Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature.

Keywords: curvature, finite element analysis, thermal barrier coating, thermal fatigue, temperature

Procedia PDF Downloads 527
12314 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor

Authors: Zeynep Aytaç, Nuri Yücel

Abstract:

Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.

Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point

Procedia PDF Downloads 103
12313 Design and Evaluation of Corrective Orthosis Knee for Hyperextension

Authors: Valentina Narvaez Gaitan, Paula K. Rodriguez Ramirez, Derian D. Espinosa

Abstract:

Corrective orthosis has great importance in orthopedic treatments providing assistance in improving mobility and stability in order to improve the quality of life for a different patient. The corrective orthosis studied in this article can correct deformities, reduce pain, and improve the ability to perform daily activities. This work describes the design and evaluation of a corrective orthosis for knee hyperextension. This orthosis is capable of generating a progressive and variable alignment of the joint, limiting the range of motion according to medical criteria. The main objective was to design a corrective knee orthosis capable of correcting knee hyperextension progressively to return to its natural angle with greater economic affordability and adjustable size. The limiting mechanism is based on a goniometer to determine the desired angles. The orthosis was made of acrylic to reduce costs and maintenance; neoprene is also used to make comfortable contact; additionally, Velcro was used in order to adjust the orthosis for various sizes. Simulations of static and fatigue analysis of the mechanism were performed to verify its resistance and durability under normal conditions. A biomechanical gait study of gait was carried out on 10 healthy subjects without the orthosis and limiting their knee extension capacity in a normal gait cycle with the orthosis to observe the efficiency of the proposed system. In the results obtained, the knee angle curves show that the maximum extension angle was the established angle by the orthosis. Showing the efficiency of the proposed design for different leg sizes.

Keywords: biomechanical study, corrective orthosis, efficiency, goniometer, knee hyperextension.

Procedia PDF Downloads 43
12312 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment

Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley

Abstract:

Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.

Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment

Procedia PDF Downloads 108
12311 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya

Abstract:

Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.

Keywords: acoustic metamaterials, noise, functional materials, ventilated

Procedia PDF Downloads 48
12310 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites

Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi

Abstract:

The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.

Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures

Procedia PDF Downloads 234
12309 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 83
12308 The Role of Industrial Design in Fashion

Authors: Rojean Ghafariasar, Leili Nosrati

Abstract:

The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.

Keywords: fashion, design, industrial design, crossover design

Procedia PDF Downloads 55
12307 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 412
12306 Study of the Influence of Hole Topology on Crack Propagation Rate

Authors: Hallan Moura Ladeira, Carla Tatiana Mota Anflor

Abstract:

The drilling process for bolted or riveted joints of components is very common in the naval, aeronautical, mechanical, and civil industries. In this context, the present work aims to study, through computer simulation, the influence of hole geometry (through, chamfered, and rounded) on crack propagation when submitted to static and dynamic loads. For the static crack evaluation, failure was considered when the stress intensity factor (FIT) exceeds the fracture toughness of the material (KIc). In the case of fatigue, the condition of the small crack tip plastification zone and the Paris Law were considered for determining region II of the dadN x ΔK curve. Initially, a parametric analysis of the hole geometry was performed to obtain a topology that would result in less discontinuity of the stress field and, consequently, less influence on static crack growth. The best performing topology was then used to study the fatigue crack growth rate considering the Paris Law. The numerical tests were performed on a 7075-T6 aluminum specimen resulting in dadN x ΔK curves in good agreement with the literature.

Keywords: holes, cracks, loading, fracture toughness

Procedia PDF Downloads 83