Search results for: elliptic curve digital signature algorithm
7375 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications
Authors: A. Andreasyan, C. Connors
Abstract:
The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol
Procedia PDF Downloads 1447374 Arithmetic Operations Based on Double Base Number Systems
Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan
Abstract:
Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm
Procedia PDF Downloads 3957373 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA
Authors: Mohamad Khairi Ishak
Abstract:
Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.Keywords: elliptic curve cryptography, FPGA, key sizes, memory
Procedia PDF Downloads 3187372 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography
Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo
Abstract:
Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding
Procedia PDF Downloads 2047371 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field
Authors: Tun Myat Aung, Ni Ni Hla
Abstract:
This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.cKeywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field
Procedia PDF Downloads 2327370 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long
Abstract:
Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.Keywords: decryption, encryption, elliptic curve, greater common divisor
Procedia PDF Downloads 2557369 A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)
Authors: Shiji Hu, Lei Li, Wanting Zhou, DaoHong Yang
Abstract:
The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9).Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.
Procedia PDF Downloads 967368 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728
Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili
Abstract:
In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field
Procedia PDF Downloads 1977367 Improved of Elliptic Curves Cryptography over a Ring
Authors: Abdelhakim Chillali, Abdelhamid Tadmori, Muhammed Ziane
Abstract:
In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.Keywords: elliptic curves, finite ring, cryptography, study
Procedia PDF Downloads 3717366 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography
Authors: R. Rama Kishore, Sunesh
Abstract:
Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy
Procedia PDF Downloads 3657365 Cryptanalysis of ID-Based Deniable Authentication Protocol Based On Diffie-Hellman Problem on Elliptic Curve
Authors: Eun-Jun Yoon
Abstract:
Deniable authentication protocol is a new security authentication mechanism which can enable a receiver to identify the true source of a given message, but not to prove the identity of the sender to a third party. In 2013, Kar proposed a secure ID-based deniable authentication protocol whose security is based on computational infeasibility of solving Elliptic Curve Diffie-Hellman Problem (ECDHP). Kar claimed that the proposed protocol achieves properties of deniable authentication, mutual authentication, and message confidentiality. However, this paper points out that Kar's protocol still suffers from sender spoofing attack and message modification attack unlike its claims.Keywords: deniable authentication, elliptic curve cryptography, Diffie-Hellman problem, cryptanalysis
Procedia PDF Downloads 3297364 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 1457363 An Optimized RDP Algorithm for Curve Approximation
Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park
Abstract:
It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.Keywords: curve approximation, essential point, RDP algorithm
Procedia PDF Downloads 5347362 Rounding Technique's Application in Schnorr Signature Algorithm: Known Partially Most Significant Bits of Nonce
Authors: Wenjie Qin, Kewei Lv
Abstract:
In 1996, Boneh and Venkatesan proposed the Hidden Number Problem (HNP) and proved the most significant bits (MSB) of computational Diffie-Hellman key exchange scheme and related schemes are unpredictable bits. They also gave a method which is a lattice rounding technique to solve HNP in non-uniform model. In this paper, we put forward a new concept that is Schnorr-MSB-HNP. We also reduce the problem of solving Schnorr signature private key with a few consecutive most significant bits of random nonce (used at each signature generation) to Schnorr-MSB-HNP, then we use the rounding technique to solve the Schnorr-MSB-HNP. We have come to the conclusion that if there is a ‘miraculous box’ which inputs the random nonce and outputs 2loglogq (q is a prime number) most significant bits of nonce, the signature private key will be obtained by choosing 2logq signature messages randomly. Thus we get an attack on the Schnorr signature private key.Keywords: rounding technique, most significant bits, Schnorr signature algorithm, nonce, Schnorr-MSB-HNP
Procedia PDF Downloads 2327361 A Lightweight Authentication and Key Exchange Protocol Design for Smart Homes
Authors: Zhifu Li, Lei Li, Wanting Zhou, Yuanhang He
Abstract:
This paper proposed a lightweight certificate-less authentication and key exchange protocol (Light-CL-PKC) based on elliptic curve cryptography and the Chinese Remainder Theorem for smart home scenarios. Light-CL-PKC can efficiently reduce the computational cost of both sides of authentication by forgoing time-consuming bilinear pair operations and making full use of point-addition and point-multiplication operations on elliptic curves. The authentication and key exchange processes in this system are also completed in a a single round of communication between the two parties. The analysis result demonstrates that it can significantly minimize the communication overhead of more than 32.14% compared with the referenced protocols, while the runtime for both authentication and key exchange have also been significantly reduced.Keywords: authentication, key exchange, certificateless public key cryptography, elliptic curve cryptography
Procedia PDF Downloads 977360 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1477359 A Secure Digital Signature Scheme with Fault Tolerance Based on the Improved RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Fault tolerance and data security are two important issues in modern communication systems. In this paper, we propose a secure and efficient digital signature scheme with fault tolerance based on the improved RSA system. The proposed scheme for the RSA cryptosystem contains three prime numbers and overcome several attacks possible on RSA. By using the Chinese Reminder Theorem (CRT) the proposed scheme has a speed improvement on the RSA decryption side and it provides high security also.Keywords: digital signature, fault tolerance, RSA, security analysis
Procedia PDF Downloads 4757358 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number
Authors: Amit K. Singh, Subhankar Sen
Abstract:
The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element
Procedia PDF Downloads 3427357 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation
Procedia PDF Downloads 3607356 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA
Procedia PDF Downloads 3967355 Solving 94-Bit ECDLP with 70 Computers in Parallel
Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai
Abstract:
Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.Keywords: Pollard's rho method, BN curve, Montgomery multiplication
Procedia PDF Downloads 2717354 BAN Logic Proof of E-passport Authentication Protocol
Authors: Safa Saoudi, Souheib Yousfi, Riadh Robbana
Abstract:
E-passport is a relatively new electronic document which maintains the passport features and provides better security. It deploys new technologies such as biometrics and Radio Frequency identification (RFID). The international civil aviation organization (ICAO) and the European union define mechanisms and protocols to provide security but their solutions present many threats. In this paper, a new mechanism is presented to strengthen e-passport security and authentication process. We propose a new protocol based on Elliptic curve, identity based encryption and shared secret between entities. Authentication in our contribution is formally proved with BAN Logic verification language. This proposal aims to provide a secure data storage and authentication.Keywords: e-passport, elliptic curve cryptography, identity based encryption, shared secret, BAN Logic
Procedia PDF Downloads 4347353 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs
Authors: Josef Slapal
Abstract:
Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency
Procedia PDF Downloads 3787352 Secure Proxy Signature Based on Factoring and Discrete Logarithm
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.Keywords: discrete logarithm, factoring, proxy signature, key agreement
Procedia PDF Downloads 3077351 Abnormal Features of Two Quasiparticle Rotational Bands in Rare Earths
Authors: Kawalpreet Kalra, Alpana Goel
Abstract:
The behaviour of the rotational bands should be smooth but due to large amount of inertia and decreased pairing it is not so. Many experiments have been done in the last few decades, and a large amount of data is available for comprehensive study in this region. Peculiar features like signature dependence, signature inversion, and signature reversal are observed in many two quasiparticle rotational bands of doubly odd and doubly even nuclei. At high rotational frequencies, signature and parity are the only two good quantum numbers available to label a state. Signature quantum number is denoted by α. Even-angular momentum states of a rotational band have α =0, and the odd-angular momentum states have α =1. It has been observed that the odd-spin members lie lower in energy up to a certain spin Ic; the normal signature dependence is restored afterwards. This anomalous feature is termed as signature inversion. The systematic of signature inversion in high-j orbitals for doubly odd rare earth nuclei have been done. Many unusual features like signature dependence, signature inversion and signature reversal are observed in rotational bands of even-even/odd-odd nuclei. Attempts have been made to understand these phenomena using several models. These features have been analyzed within the framework of the Two Quasiparticle Plus Rotor Model (TQPRM).Keywords: rotational bands, signature dependence, signature quantum number, two quasiparticle
Procedia PDF Downloads 1677350 Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography
Authors: Despoina Chochtoula, Aristidis Ilias, Yannis Stamatiou
Abstract:
Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature.Keywords: elliptic curve cryptography, ICT security, modbus protocol, SCADA, TCP/IP protocol
Procedia PDF Downloads 2707349 Exploring the Applications of Modular Forms in Cryptography
Authors: Berhane Tewelday Weldhiwot
Abstract:
This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory
Procedia PDF Downloads 157348 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3847347 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration
Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich
Abstract:
Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm
Procedia PDF Downloads 4297346 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions
Authors: Edamana Krishnan, Khalil Al-Ghafri
Abstract:
In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods
Procedia PDF Downloads 304