Search results for: credit card fraud
688 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 112687 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 65686 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 120685 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 147684 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 56683 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 59682 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 473681 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Amir Shahab Shahabi, Mohsen Hasirian
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 12680 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 128679 Government Credit Card in State Financial Management: Public Sector Innovation in Indonesia
Authors: Paramita Nur Kurniati, Stanislaus Riyanta
Abstract:
In the midst of the heightened usage of electronic money (e-money), Indonesian government expenditure is yet governed through cash-basis transactions. This conventional system brings about a number of potential risks and obstacles to operational conduct, including state financial liquidity issue. Consequently, Ministry of Finance is currently establishing the cashless payment methods for State Budget (APBN). Included in those advance methods is credit card facility as a government expenditure payment scheme. This policy is one of the innovations within the public sector learned from other countries’ best practices. Moreover, this particular method is already prominent within the private-sector realm. Qualitative descriptive analysis technique is implemented to evaluate the contemporary innovation of using government credit card in the path towards cashless society. This approach is expected to generate several benefits for the government, particularly in minimizing corruption within the state financial management. Effective coordination among policy makers and policy implementers is essential for the success of this policy’s exercise, without neglecting prudence and public transparency aspects. Government credit card usage shall be the potent resolution for enhancing the government’s overall public service performance.Keywords: cashless basis, cashless society, government credit card, public sector innovation
Procedia PDF Downloads 148678 Automatic Teller Machine System Security by Using Mobile SMS Code
Authors: Husnain Mushtaq, Mary Anjum, Muhammad Aleem
Abstract:
The main objective of this paper is used to develop a high security in Automatic Teller Machine (ATM). In these system bankers will collect the mobile numbers from the customers and then provide a code on their mobile number. In most country existing ATM machine use the magnetic card reader. The customer is identifying by inserting an ATM card with magnetic card that hold unique information such as card number and some security limitations. By entering a personal identification number, first the customer is authenticated then will access bank account in order to make cash withdraw or other services provided by the bank. Cases of card fraud are another problem once the user’s bank card is missing and the password is stolen, or simply steal a customer’s card & PIN the criminal will draw all cash in very short time, which will being great financial losses in customer, this type of fraud has increase worldwide. So to resolve this problem we are going to provide the solution using “Mobile SMS code” and ATM “PIN code” in order to improve the verify the security of customers using ATM system and confidence in the banking area.Keywords: PIN, inquiry, biometric, magnetic strip, iris recognition, face recognition
Procedia PDF Downloads 363677 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 143676 The Underground Ecosystem of Credit Card Frauds
Authors: Abhinav Singh
Abstract:
Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem
Procedia PDF Downloads 438675 Practical Limitations of the Fraud Triangle Framework in Fraud Prevention
Authors: Alexander Glebovskiy
Abstract:
Practitioners charged with fraud prevention and investigation strongly rely on the Fraud Triangle framework developed by Joseph T. Wells in 1997 while analyzing the causes of fraud at business organizations. The Fraud Triangle model explains fraud by elements such as pressure, opportunity, and rationalization. This view is not fully suitable for effective fraud prevention as the Fraud Triangle model provides limited insight into the causation of fraud. Fraud is a multifaceted phenomenon, the contextual factors of which may not fit into any framework. Employee criminal behavior in business organizations is influenced by environmental, individual, and organizational aspects. Therefore, further criminogenic factors and processes facilitating fraud in organizational settings need to be considered in the root-cause analysis: organizational culture, leadership style, groupthink effect, isomorphic behavior, crime of obedience, displacement of responsibility, lack of critical thinking and unquestioning conformity and loyalty.Keywords: criminogenesis, fraud triangle, fraud prevention, organizational culture
Procedia PDF Downloads 299674 The Role of Information and Communication Technology in Curbing Electoral Malpractices in Nigeria
Authors: Fred Fudah Moveh, Muhammad Abba Jallo
Abstract:
Electoral fraud remains a persistent threat to democracy in Nigeria, undermining public trust and stalling political development. This study explores the role of Information and Communication Technology (ICT) in curbing electoral fraud, focusing on its application in recent Nigerian elections. The paper identifies the main forms of electoral fraud, evaluates the effectiveness of ICT-based interventions like the Permanent Voter Card (PVC) and the Bi-modal Voter Accreditation System (BVAS), and discusses challenges such as poor infrastructure, voter intimidation, and legal inadequacies. Data was collected through structured questionnaires and interviews and analyzed using SPSS software. Results reveal that while ICT has mitigated some forms of fraud, systemic issues continue to hinder its full potential. The study concludes with recommendations for enhancing the application of ICT in Nigeria’s electoral process.Keywords: ICT, electoral fraud, election process, Nigeria, political instability
Procedia PDF Downloads 21673 Modulation of the Europay, MasterCard, and VisaCard Authentications by Using Avispa Tool
Authors: Ossama Al-Maliki
Abstract:
The Europay, MasterCard, and Visa (EMV) is the transaction protocol for most of the world and especially in Europe and the UK. EMV protocol consists of three main stages which are: card authentication, cardholder verification methods, and transaction authorization. This paper details in full the EMV card authentications. We have used AVISPA and SPAN tools to do our modulization for the EMV card authentications. The code for each type of the card authentication was written by using CAS+ language. The results showed that our modulations were successfully addressed all the steps of the EMV card authentications and the entire process of the EMV card authentication are secured. Also, our modulations were successfully addressed all the main goals behind the EMV card authentications according to the EMV specifications.Keywords: EMV, card authentication, contactless card, SDA, DDA, CDA AVISPA
Procedia PDF Downloads 177672 Detecting Model Financial Statement Fraud by Auditor Industry Specialization with Fraud Triangle Analysis
Authors: Reskino Resky
Abstract:
This research purposes to create a model to detecting financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. This research used sample of company which is listed in Indonesian Stock Exchange that have sanctions and cases by Financial Services Authority in 2011-2013. The number of company that were became in this research were 30 fraud company and 30 non-fraud company. The method of determining the sample is by using purposive sampling method with judgement sampling, while the data processing methods used by researcher are mann-whitney u and discriminants analysis. This research have two from five variable that can be process with discriminant analysis. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.Keywords: fraud triangle analysis, financial targets, financial stability, auditor industry specialization, financial statement fraud
Procedia PDF Downloads 455671 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service
Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong
Abstract:
Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation
Procedia PDF Downloads 332670 Computer Fraud from the Perspective of Iran's Law and International Documents
Authors: Babak Pourghahramani
Abstract:
One of the modern crimes against property and ownership in the cyber-space is the computer fraud. Despite being modern, the aforementioned crime has its roots in the principles of religious jurisprudence. In some cases, this crime is compatible with the traditional regulations and that is when the computer is considered as a crime commitment device and also some computer frauds that take place in the context of electronic exchanges are considered as crime based on the E-commerce Law (approved in 2003) but the aforementioned regulations are flawed and until recent years there was no comprehensive law in this regard; yet after some years the Computer Crime Act was approved in 2009/26/5 and partly solved the problem of legal vacuum. The present study intends to investigate the computer fraud according to Iran's Computer Crime Act and by taking into consideration the international documents.Keywords: fraud, cyber fraud, computer fraud, classic fraud, computer crime
Procedia PDF Downloads 331669 Civil Liability for Digital Crimes
Authors: Pál Mészáros
Abstract:
The aim of this research topic is to examine civil law consequences caused by crimes committed in the digital space. During the commission of certain crimes, not only the rights of one person are violated, but also the rights of an entire institution, for example, if the information system of a university is attacked. The consequences of these crimes committed in the digital space may also be that the victim himself is liable to other third parties, for example, in the event that health data comes into the possession of unauthorized persons, and it can be proved that the service provider's IT system was inadequate. An interesting question may also be the civil liability of credit institutions if someone becomes a victim of fraud but is not expected from him/her to notice the fraud. In such a case, the liability of the credit institution may arise if they do not respond in time in the case of unauthorized bank transactions. Based on the above, the main topic of the research is the civil liability of the victim, or another person or company related to the victim in the case of damages caused by crimes.Keywords: civil liability, digital crimes, transfer of responsibility, civil law
Procedia PDF Downloads 63668 Insider Fraud and its Risks to FinTechs
Authors: Claire Maillet
Abstract:
Insider fraud, including its various forms such as employee fraud or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective or past employer. ‘Employee’ covers anyone employed by the company, including contractors, agency workers, directors and part time staff. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic and the cost-of-living crisis, which have generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime; Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud. Given that the number of FinTechs is on the rise and there is a significant lack of empirically based solutions for reducing insider fraud, these are gaps in the research space that this thesis aims to fill. Finally, Kassem (2022) notes that “academic research plays a crucial role in raising awareness about fraud and researching effective methods for countering it”. Thus, this thesis may be used as an opportune tool to provide an extensive list of controls spanning detection, deterrence and prevention, that are recommended to be implemented to help combat the insider threat.Keywords: insider fraud, internal fraud, pandemic, Covid-19
Procedia PDF Downloads 20667 Use of Multistage Transition Regression Models for Credit Card Income Prediction
Authors: Denys Osipenko, Jonathan Crook
Abstract:
Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability
Procedia PDF Downloads 484666 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification
Authors: Mohammad Sarchami, Mohsen Zeinalkhani
Abstract:
Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm
Procedia PDF Downloads 247665 A Study of Management Principles Incorporating Corporate Governance and Advocating Ethics to Reduce Fraud at a South African Bank
Authors: Roshan Jelal, Charles Mbohwa
Abstract:
In today’s world, internal fraud remains one of the most challenging problems within companies worldwide and despite investment in controls and attention given to the problem, the instances of internal fraud has not abated. To the contrary it appears that internal fraud is on the rise especially in the wake of the economic downturn. Leadership within companies believes that the more sophisticated the controls employed the less likely it would be for employees to pilfer. This is a very antiquated view as investment in controls may not be enough to curtail internal fraud; however, ensuring that a company drives the correct culture and behaviour within the organisation is likely to yield desired results. This research aims to understand how creating a strong ethical culture and embedding the principle of good corporate governance impacts on levels of internal fraud with an organization (a South African Bank).Keywords: internal fraud, corporate governance, ethics, reserve bank, the King Code
Procedia PDF Downloads 415664 An Exploration of Why Insider Fraud Is the Biggest Threat to Your Business
Authors: Claire Norman-Maillet
Abstract:
Insider fraud, otherwise known as occupational, employee, or internal fraud, is a financial crime threat. Perpetrated by defrauding (or attempting to defraud) one’s current, prospective, or past employer, an ‘employee’ covers anyone employed by the company, including board members and contractors. The Coronavirus pandemic has forced insider fraud into the spotlight, and it isn’t dimming. As the focus of most academics and practitioners has historically been on that of ‘external fraud’, insider fraud is often overlooked or not considered to be a real threat. However, since COVID-19 changed the working world, pushing most of us into remote or hybrid working, employers cannot easily keep an eye on what their staff are doing, which has led to reliance on trust and transparency. This, therefore, brings about an increased risk of insider fraud perpetration. The objective of this paper is to explore why insider fraud is, therefore, now the biggest threat to a business. To achieve the research objective, participating individuals within the financial crime sector (either as a practitioner or consultants) attended semi-structured interviews with the researcher. The principal recruitment strategy for these individuals was via the researcher’s LinkedIn network. The main findings in the research suggest that insider fraud has been ignored and rejected as a threat to a business, owing to a reluctance to admit that a colleague may perpetrate. A positive of the Coronavirus pandemic is that it has forced insider fraud into a more prominent position and giving it more importance on a business’ agenda and risk register. Despite insider fraud always having been a possibility (and therefore a risk) within any business, it is very rare that a business has given it the attention it requires until now, if at all. The research concludes that insider fraud needs to prioritised by all businesses, and even ahead of external fraud. The research also provides advice on how a business can add new or enhance existing controls to mitigate the risk.Keywords: insider fraud, occupational fraud, COVID-19, COVID, coronavirus, pandemic, internal fraud, financial crime, economic crime
Procedia PDF Downloads 63663 E-Hailing Taxi Industry Management Mode Innovation Based on the Credit Evaluation
Authors: Yuan-lin Liu, Ye Li, Tian Xia
Abstract:
There are some shortcomings in Chinese existing taxi management modes. This paper suggests to establish the third-party comprehensive information management platform and put forward an evaluation model based on credit. Four indicators are used to evaluate the drivers’ credit, they are passengers’ evaluation score, driving behavior evaluation, drivers’ average bad record number, and personal credit score. A weighted clustering method is used to achieve credit level evaluation for taxi drivers. The management of taxi industry is based on the credit level, while the grade of the drivers is accorded to their credit rating. Credit rating determines the cost, income levels, the market access, useful period of license and the level of wage and bonus, as well as violation fine. These methods can make the credit evaluation effective. In conclusion, more credit data will help to set up a more accurate and detailed classification standard library.Keywords: credit, mobile internet, e-hailing taxi, management mode, weighted cluster
Procedia PDF Downloads 323662 Security Analysis of SIMSec Protocol
Authors: Kerem Ok, Cem Cevikbas, Vedat Coskun, Mohammed Alsadi, Busra Ozdenizci
Abstract:
Un-keyed SIM cards do not contain the required security infrastructure to provide end-to-end encryption with Service Providers. Hence, new, emerging, or smart services those require end-to-end encryption between SIM card and a Service Provider is impossible. SIMSec key exchange protocol creates symmetric keys between SIM card and Service Provider. After a successful protocol execution, SIM card and Service Provider creates the symmetric keys and can perform end-to-end data encryption when required. In this paper, our aim is to analyze the SIMSec protocol’s security. According to the results, SIM card and Service Provider can generate keys securely using SIMSec protocol.Keywords: End-to-end encryption, key exchange, SIM card, smart card
Procedia PDF Downloads 282661 Implementation of Smart Card Automatic Fare Collection Technology in Small Transit Agencies for Standards Development
Authors: Walter E. Allen, Robert D. Murray
Abstract:
Many large transit agencies have adopted RFID technology and electronic automatic fare collection (AFC) or smart card systems, but small and rural agencies remain tied to obsolete manual, cash-based fare collection. Small countries or transit agencies can benefit from the implementation of smart card AFC technology with the promise of increased passenger convenience, added passenger satisfaction and improved agency efficiency. For transit agencies, it reduces revenue loss, improves passenger flow and bus stop data. For countries, further implementation into security, distribution of social services or currency transactions can provide greater benefits. However, small countries or transit agencies cannot afford expensive proprietary smart card solutions typically offered by the major system suppliers. Deployment of Contactless Fare Media System (CFMS) Standard eliminates the proprietary solution, ultimately lowering the cost of implementation. Acumen Building Enterprise, Inc. chose the Yuma County Intergovernmental Public Transportation Authority (YCIPTA) existing proprietary YCAT smart card system to implement CFMS. The revised system enables the purchase of fare product online with prepaid debit or credit cards using the Payment Gateway Processor. Open and interoperable smart card standards for transit have been developed. During the 90-day Pilot Operation conducted, the transit agency gathered the data from the bus AcuFare 200 Card Reader, loads (copies) the data to a USB Thumb Drive and uploads the data to the Acumen Host Processing Center for consolidation of the data into the transit agency master data file. The transition from the existing proprietary smart card data format to the new CFMS smart card data format was transparent to the transit agency cardholders. It was proven that open standards and interoperability design can work and reduce both implementation and operational costs for small transit agencies or countries looking to expand smart card technology. Acumen was able to avoid the implementation of the Payment Card Industry (PCI) Data Security Standards (DSS) which is expensive to develop and costly to operate on a continuing basis. Due to the substantial additional complexities of implementation and the variety of options presented to the transit agency cardholder, Acumen chose to implement only the Directed Autoload. To improve the implementation efficiency and the results for a similar undertaking, it should be considered that some passengers lack credit cards and are averse to technology. There are more than 1,300 small and rural agencies in the United States. This grows by 10 fold when considering small countries or rural locations throughout Latin American and the world. Acumen is evaluating additional countries, sites or transit agency that can benefit from the smart card systems. Frequently, payment card systems require extensive security procedures for implementation. The Project demonstrated the ability to purchase fare value, rides and passes with credit cards on the internet at a reasonable cost without highly complex security requirements.Keywords: automatic fare collection, near field communication, small transit agencies, smart cards
Procedia PDF Downloads 282660 A Study on How Insider Fraud Impacts FinTechs
Authors: Claire Norman-Maillet
Abstract:
Insider fraud is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including Board members and part-time staff. Insider fraud can take many forms, including an employee working alone or in collusion with others. Insider fraud has been on the rise since the Coronavirus pandemic and shows no signs of slowing. The objective of the research is to better understand how FinTechs are impacted by insider fraud and, therefore, how to stop it. This research will make an original contribution to the financial crime field, given the timing of this research being intertwined with the cost-of-living crisis in the UK and the global Coronavirus pandemic. This research focuses on insider fraud within FinTechs specifically, as they are arguably a modern phenomenon in the financial institutions space and have cutting-edge technology at their disposal. To achieve the research objective, the researcher held semi-structured interviews with over 20 individuals who deal with insider fraud perpetration in a practitioner, recruitment, or advisory capacity. The interviews were subsequently transcribed and analysed thematically. Main findings in the research suggest that FinTechs are arguably in the best position to combat insider fraud, given their focus on using recent technologies, as this can be used to combat the threat. However, insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer, as well as the idea that external fraud is the most important threat. The research concludes that, whilst the technology is understandably prioritised by FinTechs for providing an agreeable customer experience, insider fraud needs to be given a platform upon which to be recognised as a significant threat to any company. Moreover, insider fraud needs to be given the same level of weighting and attention by Executive Committees and Boards as the customer experience.Keywords: insider fraud, occupational fraud, COVID-19, COVID, Coronavirus, pandemic, internal fraud, financial crime, economic crime
Procedia PDF Downloads 57659 Influence of Telkom Membership Card Customer Perceived Value on Retaining PT. Telkom Indonesia's Customer in 2013-2014
Authors: Eka Yuliana, Siska Shabrina Julyan
Abstract:
The competitive environment and high customer’s churn rate in telecommunication industries lead Indonesian telecommunication companies become strive to offer products with more value. Offering product with more value can encourage customers to keep using the companies product. One of way to retain customer is give a membership card to the customers as practiced by PT. Telkom by giving Telkom Membership Card to PT. Telkom loyal customer. This study aims to determine the influence of Telkom Membership Card customer perceived value on retaining PT. Telkom Indonesia’s customer in 2013-2014 by using quantitative method with causal study. Analythical technique used in this study is Structural Equation Modelling (SEM) to test the causal relationship with 216 owner of Telkom Membership Card in Indonesia. This study conclude that: (i) Customer perceived value on Telkom Membership Card is located in fair value zone, (ii) PT. Telkom efforts in order to retain the customers is classified as good, (iii) Customer perceived value is influencing the effort to retain the customer with the probability value less than 0.05 and level of influence 69%. Based on result of this study, PT. Telkom should (i) Improve Telkom Membership Card’s promotion because not all customer of PT. Telkom have the membership card. (iia) Adding Telkom Membership Card’s benefit such as discount at various merchant (iib) Making call center for member of Telkom Membership Card (iii) PT. Telkom should be ensure availability of their service. (iv) PT. Telkom should make a priority to customer who have telkom membership card and offers a better service.For future research should be use different variables.Keywords: customer perceived value, customer retention, marketing, relationship marketing
Procedia PDF Downloads 319