Search results for: contact force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3819

Search results for: contact force

3669 Study of Side Effects of Myopia Contact Correction by Soft Lenses and Orthokeratology Lenses among Medical Students

Authors: K. Iu. Hrizhymalska, O. Ol. Andrushkova, I. Iu. Pshenychna

Abstract:

Aim. To study and copare the side effects of myopia contact correction by soft lenses and orthokeratology lenses among medical students. Patients and methods: 34 students (68 eyes) with moderate and severe myopia, who used contact correction of myopia for 2-4 years, were examined. Some of them used soft lenses, while others - orthokeratology lenses. Methods were used: biomicroscopy of the eye surface, Schirmer's test, Norn's test, survey regarding satisfaction with use. Results. Corneal vascularization along the limbus was noted in 4 (5%) eyes of the examined students. In 8 (11%) eyes, symptoms of mild dry eye disease were detected. 2 (3%) eyes showed signs of meibomitis. Allergic conjunctivitis was observed in 4 (5%) eyes, and a purulent corneal ulcer was present in 1 eye. Surveys have shown that orthokeratology lenses unlike soft lenses don't limit everyday activity (in sports, tourism, swimming etc.), they also don't cause discomfort during temperature changes and reduce existing symptoms of dry eye disease. Conclusion. Thus, myopia contact correction is one of the optimal options among students, which allows to expand physical and mental activity. However, taking into account the frequency of side effects in users of soft contact lenses, it is necessary to carry out prevention and treatment of myopia in medical students, follow the recommendations for use, instill preservative-free tear substitutes with trehalose when symptoms of dry eye appear. Also when side reactions occur, contact correction with soft lenses should be changed to orthokeratology lenses.

Keywords: correction, myopia, soft lenses, orthokeratology, specracles, cornea, dry eye, side effects, refractive errors

Procedia PDF Downloads 25
3668 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 316
3667 Conceptual Model Providing More Information on the Contact Situation between Crime Victim and the Police

Authors: M. Inzunza

Abstract:

In contemporary society, victims of crime has been given more recognition, which have contributed to advancing the knowledge on the effects of crime. There exists a complexity of who gets the status of victim and that the typology of good versus bad can interfere with the contact situation of the victim with the police. The aim of this study is to identify the most central areas affecting the contact situation between crime victims and the police to develop a conceptual model to be useful empirically. By considering previously documented problem areas and different theoretical domains, a conceptual model has been developed. Preliminary findings suggest that an area that should be given attention is to get a better understanding of the victim, not only in terms of demographics but also in terms of risk behavior and social network. This area has been considered to influence the status of the crime victim. Another domain of value is the type of crime and the context of the incident in more detail. The police officer approach style in the contact situation is also a pertinent area that is influenced by how the police based victim services are organized and how individual police officers are suited for the mission. Suitability includes constructs from empathy models adapted to the police context and especially focusing on sub-constructs such as perspective taking. Discussion will focus on how these findings can be operationalized in practice and how they are used in ongoing empirical studies.

Keywords: empathy, perspective taking, police contact, victim of crime

Procedia PDF Downloads 111
3666 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding

Authors: Aiman Alshare, Sahar Qaadan

Abstract:

A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.

Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm

Procedia PDF Downloads 335
3665 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre

Authors: L. Nathaniel-Wurie

Abstract:

The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.

Keywords: airway, cricoid, medical education, sellick

Procedia PDF Downloads 46
3664 Determination of Anchor Lengths by Retaining Walls

Authors: Belabed Lazhar

Abstract:

The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results.

Keywords: retaining walls, anchoring, stability, mechanical modeling, safety

Procedia PDF Downloads 326
3663 Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking

Authors: Salam M. Elhafez, Ahmed A. Ashour, Naglaa M. Elhafez, Ghada M. Elhafez, Azza M. Abdelmohsen

Abstract:

Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking.

Keywords: gait analysis, ground reaction force, moment contribution, normal walking

Procedia PDF Downloads 346
3662 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 176
3661 English Pashto Contact: Morphological Adaptation of Bilingual Compound Words in Pashto

Authors: Imran Ullah Imran

Abstract:

Language contact is a familiar concept in the present global world. Across the globe, languages get mixed up at different levels. Borrowing, code-switching are some of the means through which languages interact. This study examines Pashto-English contact at word and syllable levels. By recording the speech of 30 Pashto native speakers, selected via 'social network' sampling, the study located a number of Pashto-English compound words, which is a unique contact of its kind. In data analysis, tokens were categorized on the basis of their pattern and morphological structure. The study shows that Pashto-English Bilingual Compound words (BCWs) are very prevalent in the Pashto language. The study also found that the BCWs in Pashto are completely productive and have their own meanings. It also shows that the dominant pattern of hybrid words in Pashto is the conjugation of an independent English root word followed by a Pashto inflectional morpheme, which contributes to the core semantic content of the construction. The BCWs construction shows that how both the languages are closer to each other. Pashto-English contact results into bilingual compound and hybrid words, which forms a considerable number of tokens in the present-day spoken Pashto. On the basis of these findings, the study assumes that the same phenomenon may increase with the passage of time that would, in turn, result in the formation of more bilingual compound or hybrid words.

Keywords: code-mixing, bilingual compound words, pashto-english contact, hybrid words, inflectional lexical morpheme

Procedia PDF Downloads 219
3660 Development of an Systematic Design in Evaluating Force-On-Force Security Exercise at Nuclear Power Plants

Authors: Seungsik Yu, Minho Kang

Abstract:

As the threat of terrorism to nuclear facilities is increasing globally after the attacks of September 11, we are striving to recognize the physical protection system and strengthen the emergency response system. Since 2015, Korea has implemented physical protection security exercise for nuclear facilities. The exercise should be carried out with full cooperation between the operator and response forces. Performance testing of the physical protection system should include appropriate exercises, for example, force-on-force exercises, to determine if the response forces can provide an effective and timely response to prevent sabotage. Significant deficiencies and actions taken should be reported as stipulated by the competent authority. The IAEA(International Atomic Energy Agency) is also preparing force-on-force exercise program documents to support exercise of member states. Currently, ROK(Republic of Korea) is implementing exercise on the force-on-force exercise evaluation system which is developed by itself for the nuclear power plant, and it is necessary to establish the exercise procedure considering the use of the force-on-force exercise evaluation system. The purpose of this study is to establish the work procedures of the three major organizations related to the force-on-force exercise of nuclear power plants in ROK, which conduct exercise using force-on-force exercise evaluation system. The three major organizations are composed of licensee, KINAC (Korea Institute of Nuclear Nonproliferation and Control), and the NSSC(Nuclear Safety and Security Commission). Major activities are as follows. First, the licensee establishes and conducts an exercise plan, and when recommendations are derived from the result of the exercise, it prepares and carries out a force-on-force result report including a plan for implementation of the recommendations. Other detailed tasks include consultation with surrounding units for adversary, interviews with exercise participants, support for document evaluation, and self-training to improve the familiarity of the MILES (Multiple Integrated Laser Engagement System). Second, KINAC establishes a force-on-force exercise plan review report and reviews the force-on-force exercise plan report established by licensee. KINAC evaluate force-on-force exercise using exercise evaluation system and prepare training evaluation report. Other detailed tasks include MILES training, adversary consultation, management of exercise evaluation systems, and analysis of exercise evaluation results. Finally, the NSSC decides whether or not to approve the force-on-force exercise and makes a correction request to the nuclear facility based on the exercise results. The most important part of ROK's force-on-force exercise system is the analysis through the exercise evaluation system implemented by KINAC after the exercise. The analytical method proceeds in the order of collecting data from the exercise evaluation system and analyzing the collected data. The exercise application process of the exercise evaluation system introduced in ROK in 2016 will be concretely set up, and a system will be established to provide objective and consistent conclusions between exercise sessions. Based on the conclusions drawn up, the ultimate goal is to complement the physical protection system of licensee so that the system makes licensee respond effectively and timely against sabotage or unauthorized removal of nuclear materials.

Keywords: Force-on-Force exercise, nuclear power plant, physical protection, sabotage, unauthorized removal

Procedia PDF Downloads 115
3659 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force

Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak

Abstract:

In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.

Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity

Procedia PDF Downloads 211
3658 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 294
3657 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior

Authors: H. M. Mobarak, Helen Wu, Keqin Xiao

Abstract:

In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.

Keywords: crack breathing, crack location, slant crack, unbalance force, rotating shaft

Procedia PDF Downloads 246
3656 Effect of In-Season Linear Sprint Training on Sprint Kinematics of Amateur Soccer Players

Authors: Avinash Kharel

Abstract:

Background: - Linear sprint training is one possible approach to developing sprint performance, a crucial skill to focus on in soccer. Numerous methods, including various on-field training options, can be employed to attain this goal. However, the effect of In-season linear sprint training on sprint performance and related kinetics changes are unknown in a professional setting. The study aimed to investigate the effect of in-season linear sprint training on the sprint kinematics of amateur soccer players. Methods: - After familiarization, a 4-week training protocol was completed with sprint performance and Force Velocity (FV) profiles was compared before and after the training. Eighteen amateur soccer male players (Age 22 ± 2 years: Height: 178 ± 7cm; body-mass: 74 ± 8 Kg, 30-m split-time: 4.398 ± s) participated in the study. Sprint kinematics variables, including maximum Sprint Velocity (V0), Theoretical Maximum Force (F0), Maximum Force Output per kilogram of body weight (N/KG), Maximum Velocity (V(0)), Maximum Power Output (P MAX (W)), Ratio of Force to Velocity (FV), and Ratio of Force to Velocity at Peak power were measured. Results: - Results showed significant improvements in Maximum Sprint Velocity (p<0.01, ES=0.89), Theoretical Maximum Force (p<0.05, ES=0.50), Maximum Force Output per kilogram of body weight (p<0.05, ES=0.42), Maximum Power Output (p<0.05, ES=0.52), and Ratio of Force to Velocity at Peak Power (RF PEAK) (p<0.05, ES=0.44) post-training. There were no significant changes in the ratio of Force to Velocity (FV) and Maximum Velocity V (0) post-training (p>0.05). Conclusion: - These findings suggest that In-season linear sprint training can effectively improve certain sprint kinematics variables in amateur soccer players. Coaches and players should consider incorporating linear sprint training into their in-season training programs to improve sprint performance.

Keywords: sprint performance, training intervention, soccer, kinematics

Procedia PDF Downloads 41
3655 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 435
3654 Relation between Initial Stability of the Dental Implant and Bone-Implant Contact Level

Authors: Jui-Ting Hsu, Heng-Li Huang, Ming-Tzu Tsai, Kuo-Chih Su, Lih-Jyh Fuh

Abstract:

The objectives of this study were to measure the initial stability of the dental implant (ISQ and PTV) in the artificial foam bone block with three different quality levels. In addition, the 3D bone to implant contact percentage (BIC%) was measured based on the micro-computed tomography images. Furthermore, the relation between the initial stability of dental implant (ISQ and PTV) and BIC% were calculated. The experimental results indicated that enhanced the material property of the artificial foam bone increased the initial stability of the dental implant. The Pearson’s correlation coefficient between the BIC% and the two approaches (ISQ and PTV) were 0.652 and 0.745.

Keywords: dental implant, implant stability quotient, peak insertion torque, bone-implant contact, micro-computed tomography

Procedia PDF Downloads 550
3653 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 482
3652 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 47
3651 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc

Abstract:

Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, friction, process

Procedia PDF Downloads 114
3650 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio

Procedia PDF Downloads 344
3649 The UbiB Family Member Cqd1 Forms a Membrane Contact Site in Mitochondria

Authors: S. Khosravi, X. Chelius, A. Unger, D. Rieger, J. Frickel, T. Sachsenheimer, C. Luechtenborg, R. Schieweck, B. Bruegger, B. Westermann, T. Klecker, W. Neupert, M. E. Harner

Abstract:

The use of Saccharomyces cerevisiae as a model organism to study eukaryotic cell functions has been used successfully for decades. Like virtually all eukaryotic cells, they contain mitochondria as essential organelles performing various functions, including participation in lipid metabolism. They are separated from the cytosol by a double membrane system consisting of the mitochondrial inner membrane (MIM) and the mitochondrial outer membrane (MOM). This physical separation of the mitochondria requires an exchange of metabolites, proteins, and lipids. Proteinaceous contact sites are thought to be important for this communication. Recently, it was found that Cqd1, in cooperation with Cqd2, controls the distribution of Coenzyme Q within the cell. In this study, a contact site is described, formed by the MOM protein complex Por1-Om14 and the UbiB protein kinase-like MIM protein Cqd1. The present results suggest the additional involvement of Cqd1 in the homeostasis of phospholipids. Moreover, we show that overexpression of the UbiB family proteins also causes tethering of the mitochondria to the endoplasmatic reticulum. Due to the conservation of the subunits of this contact site to higher eukaryotes, its identification in S. cerevisiae might provide promising avenues for further research in other organisms.

Keywords: contact sites, mitochondrial architecture, mitochondrial proteins, yeast mitochondria

Procedia PDF Downloads 66
3648 Transverse Behavior of Frictional Flat Belt Driven by Tapered Pulley -Change of Transverse Force Under Driving State–

Authors: Satoko Fujiwara, Kiyotaka Obunai, Kazuya Okubo

Abstract:

A skew is one of important problems for designing the conveyor and transmission with frictional flat belt, in which running belt is deviated in width direction due to the transverse force applied to the belt. The skew often not only degrades the stability of the path of belt but also causes some damages of the belt and auxiliary machines. However, the transverse behavior such as the skew has not been discussed quantitatively in detail for frictional belts. The objective of this study is to clarify the transverse behavior of frictional flat belt driven by tapered pulley. Commercially available rubber flat belt reinforced by polyamide film was prepared as the test belt where the thickness and length were 1.25 mm and 630 mm, respectively. Test belt was driven between two pulleys made of aluminum alloy, where diameter and inter-axial length were 50 mm and 150 mm, respectively. Some tapered pulleys were applied where tapered angles were 0 deg (for comparison), 2 deg, 4 deg, and 6 deg. In order to alternatively investigate the transverse behavior, the transverse force applied to the belt was measured when the skew was constrained at the string under driving state. The transverse force was measured by a load cell having free rollers contacting on the side surface of the belt when the displacement in the belt width direction was constrained. The conditions of observed bending stiffness in-plane of the belt were changed by preparing three types of belts (the width of the belt was 20, 30, and 40 mm) where their observed stiffnesses were changed. The contributions of the bending stiffness in-plane of belt and initial inter-axial force to the transverse were discussed in experiments. The inter-axial force was also changed by setting a distance (about 240 mm) between the two pulleys. Influence of observed bending stiffness in-plane of the belt and initial inter-axial force on the transverse force were investigated. The experimental results showed that the transverse force was increased with an increase of observed bending stiffness in-plane of the belt and initial inter-axial force. The transverse force acting on the belt running on the tapered pulley was classified into multiple components. Those were components of forces applied with the deflection of the inter-axial force according to the change of taper angle, the resultant force by the bending moment applied on the belt winding around the tapered pulley, and the reaction force applied due to the shearing deformation. The calculation result of the transverse force was almost agreed with experimental data when those components were formulated. It was also shown that the most contribution was specified to be the shearing deformation, regardless of the test conditions. This study found that transverse behavior of frictional flat belt driven by tapered pulley was explained by the summation of those components of forces.

Keywords: skew, frictional flat belt, transverse force, tapered pulley

Procedia PDF Downloads 117
3647 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 275
3646 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching

Procedia PDF Downloads 346
3645 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 348
3644 Fathers’ Rights to Contact and Care: Moving Beyond the Adversarial Approach

Authors: Wesahl Domingo, Prinslean Mahery

Abstract:

Our paper focuses on the rights’ to contact and care of fathers in the heterosexual context, despite the reality of same sex parenting in South Africa. We argue that despite the new South African Children’s Act framework creating a shift from the idea of parental power over a child to the notion that parents have parental responsibilities and rights in respect of a child. This shift has however not fundamentally changed the constant battle that parents and other interested parties have over children. In most cases it is fathers who must battle to either maintain contact with their child/ren or fight to have care (which includes custody) of their child/ren. This is the case whether or not the father was married to the mother of the child in question. In part one of the paper, we deal with the historical development of rights to care and contact and describe the current system in the context of case law and legislation in South Africa. Part two provides a critical analysis of a few anthologies of “what fathers are complaining about.” In conclusion, in part three, we outline the way forward –“moving beyond the adversarial approach” through the “care of ethics approach.” So what is the care perspective? The care perspective is a relational ethic which views the primary moral concern as of creating and sustaining responsive connection to others. We apply the care of ethics approach to parenting plans and family law mediation in the context of fathers’ rights to care and contact. We argue by avoiding the adversarial system and engaging in a problem solving process focused on finding solutions for the future, divorcing parents can turn their attention to their children rather than battling each other.

Keywords: fathers' right to care, contact, custody, family law

Procedia PDF Downloads 453
3643 Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box

Authors: Piyas Palit, Urbi Pal, Jitendra Mathur, Santanu Das

Abstract:

Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life.

Keywords: bearing, rolling contact fatigue, bearing life

Procedia PDF Downloads 144
3642 A Nuclear Negotiation Qualitative Case Study with Force Field Analysis

Authors: Onur Yuksel

Abstract:

In today’s complex foreign relations between countries, the nuclear enrichment and nuclear weapon have become a threat for all states in the world. There are couple isolated states which have capacity to produce nuclear weapons such as Iran and North Korea. In this article, Iran nuclear negotiation was analyzed in terms of its relations especially with The United States in order to find the important factors that affect the course of the ongoing nuclear negotiation. In this sense, the Force Field Analysis was used by determining and setting forth Driving and Restraining Forces of the nuclear negotiations in order to see the big picture and to develop strategies that may improve the long-term ongoing Iran nuclear negotiations. It is found that Iran nuclear negotiation heavily depends on breaking down the idea of Iran’s supporting terrorist organizations and being more transparent about nuclear and uranium enrichment. Also, it was found that Iran has to rebuild its relations with Western countries, especially with the United States. In addition, the counties— who contribute to Iran nuclear negotiations— will need to work on the dynamics and drivers of the Israel and Iran relations in order to peacefully transform the conflict between the two states.

Keywords: driving force, Iran nuclear negotiation, restraining force, the force field analysis

Procedia PDF Downloads 124
3641 Legal Allocation of Risks: A Computational Analysis of Force Majeure Clauses

Authors: Farshad Ghodoosi

Abstract:

This article analyzes the effect of supervening events in contracts. Contracts serve an important function: allocation of risks. In spite of its importance, the case law and the doctrine are messy and inconsistent. This article provides a fresh look at excuse doctrines (i.e., force majeure, impracticability, impossibility, and frustration) with a focus on force majeure clauses. The article makes the following contributions: First, it furnishes a new conceptual and theoretical framework of excuse doctrines. By distilling the decisions, it shows that excuse doctrines rests on the triangle of control, foreseeability, and contract language. Second, it analyzes force majeure clauses used by S&P 500 companies to understand the stickiness and similarity of such clauses and the events they cover. Third, using computational and statistical tools, it analyzes US cases since 1810 in order to assess the weight given to the triangle of control, foreseeability, and contract language. It shows that the control factor plays an important role in force majeure analysis, while the contractual interpretation is the least important factor. The Article concludes that it is the standard for control -whether the supervening event is beyond the control of the party- that determines the outcome of cases in the force majeure context and not necessarily the contractual language. This article has important implications on COVID-19-related contractual cases. Unlike the prevailing narrative that it is the language of the force majeure clause that’s determinative, this article shows that the primarily focus of the inquiry will be on whether the effects of COVID-19 have been beyond the control of the promisee. Normatively, the Article suggests that the trifactor of control, foreseeability, and contractual language are not effective for allocation of legal risks in times of crises. It puts forward a novel approach to force majeure clauses whereby that the courts should instead focus on the degree to which parties have relied on (expected) performance, in particular during the time of crisis.

Keywords: contractual risks, force majeure clauses, foreseeability, control, contractual language, computational analysis

Procedia PDF Downloads 113
3640 Sociophonetic Conditioning of F0 Range Compression in Diasporic Nepali Communities

Authors: Neelam Chhetry, Indranil Dutta

Abstract:

The present study accounts for the fundamental frequency (f0) perturbations of stop types in Nepali spoken in the Maram region of Manipur, India. Two different experiments were performed on the speech of the native speakers of Nepali in order to investigate if the f0 perturbation following the stop types would be affected due to contact with tonal language, Maram. We found that the Nepali speakers maintained four way stop contrast: voiceless stop (VS), voiceless aspirated stop (VLAS), voiced stop (VS) and voiced aspirated stop (VAS) despite being in contact with Maramfor a very long time. We also found that the F0 range was greater for VAS leading to F0 compression for speakers with high level of proficiency (LOP) in Maram due to extensive language contact.

Keywords: F0, sociophonetic, F0 range, sociophonetic

Procedia PDF Downloads 300