Search results for: automated generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4194

Search results for: automated generation

4194 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 38
4193 Automated CNC Part Programming and Process Planning for Turned Components

Authors: Radhey Sham Rajoria

Abstract:

Pressure to increase the competitiveness in the manufacturing sector and for the survival in the market has led to the development of machining centres, which enhance productivity, improve quality, shorten the lead time, and reduce the manufacturing cost. With the innovation of machining centres in the manufacturing sector the production lines have been replaced by these machining centers, having the ability to machine various processes and multiple tooling with automatic tool changer (ATC) for the same part. Also the process plans can be easily generated for complex components. Some means are required to utilize the machining center at its best. The present work is concentrated on the automated part program generation, and in turn automated process plan generation for the turned components on Denford “MIRAC” 8 stations ATC lathe machining centre. A package in C++ on DOS platform is developed which generates the complete CNC part program, process plan and process sequence for the turned components. The input to this system is in the form of a blueprint in graphical format with machining parameters and variables, and the output is the CNC part program which is stored in a .mir file, ready for execution on the machining centre.

Keywords: CNC, MIRAC, ATC, process planning

Procedia PDF Downloads 269
4192 A Common Automated Programming Platform for Knowledge Based Software Engineering

Authors: Ivan Stanev, Maria Koleva

Abstract:

A common platform for automated programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud-based (including the set of components for classic programming, and the set of components for combined programming) and KBASE based (including the set of components for automated programming, and the set of components for ontology programming). Four KBASE products (module for automated programming of robots, intelligent product manual, intelligent document display, and intelligent form generator) are analyzed and CPAP contributions to automated programming are presented.

Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture

Procedia PDF Downloads 341
4191 Automated Test Data Generation For some types of Algorithm

Authors: Hitesh Tahbildar

Abstract:

The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.

Keywords: ongest path, saturation point, lmax, kL, kS

Procedia PDF Downloads 403
4190 Image Encryption Using Eureqa to Generate an Automated Mathematical Key

Authors: Halima Adel Halim Shnishah, David Mulvaney

Abstract:

Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.

Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation

Procedia PDF Downloads 481
4189 KBASE Technological Framework - Requirements

Authors: Ivan Stanev, Maria Koleva

Abstract:

Automated software development issues are addressed in this paper. Layers and packages of a Common Platform for Automated Programming (CPAP) are defined based on Service Oriented Architecture, Cloud computing, Knowledge based automated software engineering (KBASE) and Method of automated programming. Tools of seven leading companies (AWS of Amazon, Azure of Microsoft, App Engine of Google, vCloud of VMWare, Bluemix of IBM, Helion of HP, OCPaaS of Oracle) are analyzed in the context of CPAP. Based on the results of the analysis CPAP requirements are formulated

Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture

Procedia PDF Downloads 298
4188 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 366
4187 Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons

Authors: Tei Kim, Brooklynn McNeil, Kathryn Dunn, Douglas I. Walker

Abstract:

To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease.

Keywords: bioinformatics, automation, opentrons, research

Procedia PDF Downloads 114
4186 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
4185 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 75
4184 Automated User Story Driven Approach for Web-Based Functional Testing

Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam

Abstract:

Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors.  In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template.  We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE.  We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators.  Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.

Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing

Procedia PDF Downloads 387
4183 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 25
4182 Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: trajectory planning, direct method, indirect method, highly automated driving

Procedia PDF Downloads 530
4181 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 284
4180 Knowledge Based Automated Software Engineering Platform Used for the Development of Bulgarian E-Customs

Authors: Ivan Stanev, Maria Koleva

Abstract:

Described are challenges to the Bulgarian e-Customs (BeC) related to low level of interoperability and standardization, inefficient use of available infrastructure, lack of centralized identification and authorization, extremely low level of software process automation, and insufficient quality of data stored in official registers. The technical requirements for BeC are prepared with a focus on domain independent common platform, specialized customs and excise components, high scalability, flexibility, and reusability. The Knowledge Based Automated Software Engineering (KBASE) Common Platform for Automated Programming (CPAP) is selected as an instrument covering BeC requirements for standardization, programming automation, knowledge interpretation and cloud computing. BeC stage 3 results are presented and analyzed. BeC.S3 development trends are identified.

Keywords: service oriented architecture, cloud computing, knowledge based automated software engineering, common platform for automated programming, e-customs

Procedia PDF Downloads 369
4179 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing

Procedia PDF Downloads 330
4178 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 103
4177 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 232
4176 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms

Authors: Cristian Pauna

Abstract:

With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.

Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies

Procedia PDF Downloads 192
4175 Towards Automated Remanufacturing of Marine and Offshore Engineering Components

Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua

Abstract:

Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.

Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering

Procedia PDF Downloads 325
4174 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Sahin Emrah Amrahov, Fatih Aybar, Serhat Dogan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: rough sets, decision rules, rule induction, classification

Procedia PDF Downloads 528
4173 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 227
4172 Feedback of an Automated Hospital about the Performance of an Automated Drug Dispensing System’s Implementation

Authors: Bouami Hind, Millot Patrick

Abstract:

The implementation of automated devices in life-critical systems such as hospitals can bring a new set of challenges related to automation malfunctions. While automation has been identified as great leverage for the medication dispensing system’s security and efficiency, it also increases the complexity of the organization. In particular, the installation and operation stage of automated devices can be complex when malfunctions related to automated systems occur. This paper aims to document operators’ situation awareness about the malfunctions of automated drug delivery systems (ADCs) during their implementation through Saint Brieuc hospital’s feedback. Our evaluation approach has been deployed in Saint Brieuc hospital center’s pharmacy, which has been equipped with automated nominative drug dispensing systems since January of 2021. The analysis of Saint Brieuc hospital center pharmacy’s automation revealed numerous malfunctions related to the implementation of Automated Delivery Cabinets. It appears that the targeted performance is not reached in the first year of implementation in this case study. Also, errors have been collected in patients' automated treatments’ production such as lack of drugs in pill boxes or nominative carnets, excess of drugs, wrong location of the drug, drug blister damaged, non-compliant sachet, or ticket errors. Saint Brieuc hospital center’s pharmacy is doing a tremendous job of setting up and monitoring performance indicators from the beginning of automation and throughout ADC’s operation to control ADC’s malfunctions and meet the performance targeted by the hospital. Health professionals, including pharmacists, biomedical engineers and directors of work, technical services and safety, are heavily involved in an automation project. This study highlights the importance of the evaluation of ADCs’ performance throughout the implementation process and the hospital’s team involvement in automation supervision and management.

Keywords: life-critical systems, situation awareness, automated delivery cabinets, implementation, risks and malfunctions

Procedia PDF Downloads 98
4171 Contribution of Automated Early Warning Score Usage to Patient Safety

Authors: Phang Moon Leng

Abstract:

Automated Early Warning Scores is a newly developed clinical decision tool that is used to streamline and improve the process of obtaining a patient’s vital signs so a clinical decision can be made at an earlier stage to prevent the patient from further deterioration. This technology provides immediate update on the score and clinical decision to be taken based on the outcome. This paper aims to study the use of an automated early warning score system on whether the technology has assisted the hospital in early detection and escalation of clinical condition and improve patient outcome. The hospital adopted the Modified Early Warning Scores (MEWS) Scoring System and MEWS Clinical Response into Philips IntelliVue Guardian Automated Early Warning Score equipment and studied whether the process has been leaned, whether the use of technology improved the usage & experience of the nurses, and whether the technology has improved patient care and outcome. It was found the steps required to obtain vital signs has been significantly reduced and is used more frequently to obtain patient vital signs. The number of deaths, and length of stay has significantly decreased as clinical decisions can be made and escalated more quickly with the Automated EWS. The automated early warning score equipment has helped improve work efficiency by removing the need for documenting into patient’s EMR. The technology streamlines clinical decision-making and allows faster care and intervention to be carried out and improves overall patient outcome which translates to better care for patient.

Keywords: automated early warning score, clinical quality and safety, patient safety, medical technology

Procedia PDF Downloads 177
4170 Homogenization of Culture and Its Effect on Preferred Reading of Media Communications Aimed at Members of Generation Z

Authors: Philip Katz

Abstract:

The research examines preferred reading of contemporary ads aimed at Generation Z through digital media. A qualitative analysis of focus groups consisting of members of Generation Z from 13 countries in Europe, the Middle East, South America and Asia has shown that, among this cohort, the influence of national culture does not create a strong impediment to understanding media communications targeting Generation Z. The familiarity of members of Generation Z with other countries’ popular culture through the spread of digital media has allowed a homogenizing effect and allowed a greater understanding of those cultures among this generation that lessens the impact of geographic separation.

Keywords: audience, Generation Z, marketing communication, preferred reading

Procedia PDF Downloads 176
4169 Automated Prepaid Billing Subscription System

Authors: Adekunle K. O, Adeniyi A. E, Kolawole E

Abstract:

One of the most dramatic trends in the communications market in recent years has been the growth of prepaid services. Today, prepaid no longer constitutes the low-revenue, basic-service segment. It is driven by a high margin, value-add service customers who view it as a convenient way of retaining control over their usage and communication spending while expecting high service levels. To service providers, prepaid services offer the advantage of reducing bad accounts while allowing them to predict usage and plan network resources. Yet, the real-time demands of prepaid services require a scalable, real-time platform to manage customers through their entire life cycle. It delivers integrated real-time rating, voucher management, recharge management, customer care and service provisioning for the generation of new prepaid services. It carries high scalability that can handle millions of prepaid customers in real-time through their entire life cycle.

Keywords: prepaid billing, voucher management, customers, automated, security

Procedia PDF Downloads 114
4168 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 113
4167 An Overview of Posterior Fossa Associated Pathologies and Segmentation

Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets

Abstract:

Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.

Keywords: chiari, posterior fossa, segmentation, volumetric

Procedia PDF Downloads 106
4166 Current Design Approach for Seismic Resistant Automated Rack Supported Warehouses: Strong Points and Critical Aspects

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are structures currently designed as steel racks. Even if there are common characteristics, there are differences that don’t allow to adopt the same design approach. Aiming to highlight the factors influencing the design and the behavior of ARSWs, a set of 5 structures designed by 5 European companies specialized in this field is used to perform both a critical analysis of the design approaches and the assessment of the seismic performance, which is used to point out the criticalities and the necessity of new design philosophy.

Keywords: steel racks, automated rack supported warehouse, thin walled cold-formed elements, seismic assessment

Procedia PDF Downloads 163
4165 Attractiveness of Cafeteria Systems as Viewed by Generation Z

Authors: Joanna Nieżurawska, Hanna Karaszewska, Anna Dziadkiewicz

Abstract:

Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.

Keywords: cafeteria, generation X, generation Y, generation Z, flexible remuneration systems, plasticization of remuneration

Procedia PDF Downloads 407