Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Search results for: Sapna Bhargav

9 Enigmatic Identity and Alienated Self: Existential Analysis of Paul Auster's the Brooklyn Follies

Authors: Sapna Bhargav

Abstract:

Contemporary fiction is an intricate exercise where novelist acquires the role of a philosopher, a sociologist and a psychologist. The dilemma of fragmented self that a man experiences, is a crucial subject of contemporary fiction. Paul Auster's fiction is exemplary of the merger of Existentialism and Postmodernism, and while both of these movements insist on isolation of the self from all aspects of social affiliation, Auster's unique blend of these concepts presents man in a state which is not just alienated, but stranded in a desolate abyss, rendering even the release of death as questionable. The conundrums of the self is a compulsory consequence of the existentialist alienation that postmodern man is subjected to, and is further accentuated by the fact that existentialist freedom dictates that not only are one's actions not dictated by any form of external entity, but also the onus of one's destiny lies on an individual's own deeds. This paper will analyse Auster's The Brooklyn Follies from an Existentialist perspective, and will attempt to trace the alienation and identity conflicts of the Auster’s characters along with some of the common Austerian themes. An emphasis will be laid on the characters’ endeavour to reconstruct their lost self.

Keywords: alienation, existentialism, identity, postmodernism, self

Procedia PDF Downloads 312
8 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite

Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh

Abstract:

Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber

Procedia PDF Downloads 254
7 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: copper-CO2 nanofluid, molecular dynamics simulation, molecular interfacial layer, thermal conductivity

Procedia PDF Downloads 221
6 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 71
5 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 89
4 Factors Influencing Paternal Involvement in Childcare: Empirical Evidence from Rural India

Authors: Anu Jose, Sapna Nair

Abstract:

By using the baseline data of a randomized cluster trial aiming to understand the effects of social, technological and business innovation on child development in two districts of Tamil Nadu, India, we examine the determinants of father involvement in childcare. While there is a growing literature on the role of fathers in child development and family systems, we particularly look at the effect of the attitude of mother and father towards father's involvement in childcare in rural South India. We find that father's own attitude and the mother's gatekeeping attitude significantly affect the father's behavior when other socio-economic characteristics of the parents are controlled. Further, the results are corroborated using different empirical models in which father involvement is conceptualized into three categories broadly; play, caretaking, and affection. We also examine the other socio-economic characteristics affecting paternal involvement using both quantitative and qualitative methods. For instance, child characteristics such as the age and birth order have a significant influence on the level of paternal involvement. That is, older the child, the more involved the father is and the father gets more involved in childcare of the second child as compared to the first child. The participants of the study included 1516 children of age 0 to 22 months from 1476 households. Results indicate that fathers of households where the mother and the father have less traditional attitude exhibit a higher level of involvement in childcare as opposed to parents having a more traditional attitude towards gender role in parenting. The results of this paper provide a major policy lesson aiming to improve paternal involvement in childcare.

Keywords: child development, father involvement, gender, parent’s attitude towards paternal involvement

Procedia PDF Downloads 31
3 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 65
2 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 17
1 A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India

Authors: Anupriya Sharma, Sapna Narula

Abstract:

Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.

Keywords: attitude and awareness, Environmental management, sustainability, textile industry

Procedia PDF Downloads 154