Search results for: Jaccard similarity
675 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila
Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores
Abstract:
This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires
Procedia PDF Downloads 0674 Genetic Diversity Analysis in Triticum Aestivum Using Microsatellite Markers
Authors: Prachi Sharma, Mukesh Kumar Rana
Abstract:
In the present study, the simple sequence repeat(SSR) markers have been used in analysis of genetic diversity of 37 genotypes of Triticum aestivum. The DNA was extracted using cTAB method. The DNA was quantified using the fluorimeter. The annealing temperatures for 27 primer pairs were standardized using gradient PCR, out of which 16 primers gave satisfactory amplification at temperature ranging from 50-62⁰ C. Out of 16 polymorphic SSR markers only 10 SSR primer pairs were used in the study generating 34 reproducible amplicons among 37 genotypes out of which 30 were polymorphic. Primer pairs Xgwm533, Xgwm 160, Xgwm 408, Xgwm 120, Xgwm 186, Xgwm 261 produced maximum percent of polymorphic bands (100%). The bands ranged on an average of 3.4 bands per primer. The genetic relationship was determined using Jaccard pair wise similarity co-efficient and UPGMA cluster analysis with NTSYS Pc.2 software. The values of similarity index range from 0-1. The similarity coefficient ranged from 0.13 to 0.97. A minimum genetic similarity (0.13) was observed between VL 804 and HPW 288, meaning they are only 13% similar. More number of available SSR markers can be useful for supporting the genetic diversity analysis in the above wheat genotypes.Keywords: wheat, genetic diversity, microsatellite, polymorphism
Procedia PDF Downloads 613673 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 37672 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees
Authors: Doru Anastasiu Popescu, Dan Rădulescu
Abstract:
In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree
Procedia PDF Downloads 355671 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity
Procedia PDF Downloads 237670 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping
Authors: Adnan A. Y. Mustafa
Abstract:
In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.Keywords: big images, binary images, image matching, image similarity
Procedia PDF Downloads 196669 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 365668 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers
Authors: Fayyaz Rasool, Shakeela Parveen
Abstract:
The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita
Procedia PDF Downloads 449667 Review and Suggestions of the Similarity between Employee and Its Workplace
Authors: Gi Ryung Song, Kyoung Seok Kim
Abstract:
This study reviewed the literature that focused on similarity of various characteristics such as values, personality, or demographics between employee and other elements in its organization for example employee with leader, job, and organization. We divided a body of this study into two parts and organized and demonstrated recent studies in first part. Three issues appeared in this part, which are statistical ways of measuring similarity, supervisor-subordinate similarity, and person-organization fit with person-job fit. In the latter part, based on the three issues of recent studies, we suggested three propositions about points that the recent studies missed or the studies did not orient. First proposition argued about the direction of similarity, which could also be interpreted as there is causal relation between employee and its workplace environments. Second, we suggested a consideration of eliminating common variance buried in one’s characteristics or its profiles. Third proposition was about the similarity of extra role behavior between individual and organization, and we treated this organization’s level of extra role behavior as a kind of its culture. In doing so, similarity of individual’s extra role behavior and organization’s has the meaning that individual’s congruence against their organization culture.Keywords: similarity, person-organization fit, supervisor-subordinate similarity, literature review
Procedia PDF Downloads 283666 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques
Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje
Abstract:
Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings
Procedia PDF Downloads 44665 2D Fingerprint Performance for PubChem Chemical Database
Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim
Abstract:
The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics
Procedia PDF Downloads 293664 A Faunistic Comparative Study of Families Hesperiidae and Nymphalidae (Lepidoptera: Rhopalocera) of Syrian Arab Republic and Republic of Armenia
Authors: N. Zarikian
Abstract:
Comparative analysis of the fauna of two families of butterflies (Lepidoptera: Rhopalocera) – Hesperiidae and Nymphalidae were carried out. In general, 122 species of the families are recorded. among these 33 species belong to Hesperiidae and 89 to Nymphalidae. The numbers by countries are as follows: 72 species are found in Syria (including 24 Hesperiidae and 48 Nymphalidae) and 97 in Armenia (26 and 71 species, respectively). Two species of Hesperiidae are reported for Syrian fauna for the first time and one species is newly recorded for Armenia. From the species above mentioned 38 are common both for Syria and Armenia. For estimation of the similarity of faunas studied were used the Jaccard index. By families the index is rather different, consisting for Hesperiidae 0.5151 and for Nymphalidae 0.337.Keywords: Armenia, fauna, Hesperiidae, Nymphalidae, (Rhopalocera: Lepidoptera), Syria
Procedia PDF Downloads 252663 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey
Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu
Abstract:
In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance
Procedia PDF Downloads 386662 Similarity Based Membership of Elements to Uncertain Concept in Information System
Authors: M. Kamel El-Sayed
Abstract:
The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems.Keywords: information system, uncertain concept, membership function, similarity relation, degree of similarity
Procedia PDF Downloads 223661 Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures
Authors: Salima Kouici, Abdelkader Khelladi
Abstract:
In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally, the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied.Keywords: binary data, similarity measure, Tθ measures, agglomerative hierarchical clustering
Procedia PDF Downloads 481660 Empirical Study of Partitions Similarity Measures
Authors: Abdelkrim Alfalah, Lahcen Ouarbya, John Howroyd
Abstract:
This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions.Keywords: clustering, comparing partitions, similarity measure, partition distance, partition metric, similarity between partitions, clustering comparison.
Procedia PDF Downloads 202659 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications
Authors: K. P. Sandesh, M. H. Suman
Abstract:
Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms
Procedia PDF Downloads 518658 Tool for Determining the Similarity between Two Web Applications
Authors: Doru Anastasiu Popescu, Raducanu Dragos Ionut
Abstract:
In this paper the presentation of a tool which measures the similarity between two websites is made. The websites are compound only from webpages created with HTML. The tool uses three ways of calculating the similarity between two websites based on certain results already published. The first way compares all the webpages within a website, the second way compares a webpage with all the pages within the second website and the third way compares two webpages. Java programming language and technologies such as spring, Jsoup, log4j were used for the implementation of the tool.Keywords: Java, Jsoup, HTM, spring
Procedia PDF Downloads 385657 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 215656 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 131655 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 175654 Static vs. Stream Mining Trajectories Similarity Measures
Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh
Abstract:
Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining
Procedia PDF Downloads 396653 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure
Procedia PDF Downloads 190652 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing
Authors: Nileshkumar Vishnav, Aditya Tatu
Abstract:
A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing
Procedia PDF Downloads 352651 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 320650 Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams
Authors: M. C. Akay, A. Aybakan, H. Temeltas
Abstract:
Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered. In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps.Keywords: common maps, heterogeneous robot team, map matching, informative theoretic similarity metrics
Procedia PDF Downloads 167649 A Similarity/Dissimilarity Measure to Biological Sequence Alignment
Authors: Muhammad A. Khan, Waseem Shahzad
Abstract:
Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.Keywords: alignment, distance, homology, mathematical model, phylogenetic tree
Procedia PDF Downloads 178648 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity
Procedia PDF Downloads 433647 Analytical Similarity Assessment of Bevacizumab Biosimilar Candidate MB02 Using Multiple State-of-the-Art Assays
Authors: Marie-Elise Beydon, Daniel Sacristan, Isabel Ruppen
Abstract:
MB02 (Alymsys®) is a candidate biosimilar to bevacizumab, which was developed against the reference product (RP) Avastin® sourced from both the European Union (EU) and United States (US). MB02 has been extensively characterized comparatively to Avastin® at a physicochemical and biological level using sensitive orthogonal state-of-the-art analytical methods. MB02 has been demonstrated similar to the RP with regard to its primary and higher-order structure, post- and co-translational profiles such as glycosylation, charge, and size variants. Specific focus has been put on the characterization of Fab-related activities, such as binding to VEGF A 165, which directly reflect the bevacizumab mechanism of action. Fc-related functionality was also investigated, including binding to FcRn, which is indicative of antibodies' half-life. The data generated during the analytical similarity assessment demonstrate the high analytical similarity of MB02 to its RP.Keywords: analytical similarity, bevacizumab, biosimilar, MB02
Procedia PDF Downloads 288646 A Word-to-Vector Formulation for Word Representation
Authors: Sandra Rizkallah, Amir F. Atiya
Abstract:
This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.Keywords: natural language processing, word to vector, text similarity, text mining
Procedia PDF Downloads 275