Search results for: real-world learning experiences
6312 Determinants of Utilization of Information and Communication Technology by Lecturers at Kenya Medical Training College, Nairobi
Authors: Agnes Anyango Andollo, Jane Achieng Achola
Abstract:
The use of Information and Communication Technologies (ICTs) has become one of the driving forces in facilitation of learning in most colleges. The ability to effectively harness the technology varies from college to college. The study objective was to determine the lecturers’, institutional attributes and policies that influence the utilization of ICT by the lecturers’. A cross sectional survey design was employed in order to empirically investigate the extent to which lecturers’ personal, institutional attributes and policies influence the utilization of ICT to facilitate learning. The target population of the study was 295 lecturers who facilitate learning at KMTC-Nairobi. Structured self-administered questionnaire was given to the lecturers. Quantitative data was scrutinized for completeness, accuracy and uniformity then coded. Data were analyzed in frequencies and percentages using Statistical Package for Social Sciences (SPSS) version 19, this was a reliable tool for quantitative data analysis. A total of 155 completed questionnaires administered were obtained from the respondents for the study that were subjected to analysis. The study found out that 93 (60%) of the respondents were male while 62 (40%) of the respondents were female. Individual’s educational level, age, gender and educational experience had the greatest impact on use of ICT. Lecturers’ own beliefs, values, ideas and thinking had moderate impact on use of ICT. And that institutional support by provision of resources for ICT related training such as internet, computers, laptops and projectors had moderate impact (p = 0.049) at 5% significant level on use of ICT. The study concluded that institutional attributes and ICT policy were keys to utilization of ICT by lecturers at KMTC Nairobi also mandatory policy on use of ICT by lecturers to facilitate learning was key. It recommended that policies should be put in place for Technical support to lecturers when in problem during utilization of ICT and also a mechanism should be put in place to make the use of ICT in teaching and learning mandatory.Keywords: policy, computers education, medical training institutions, ICTs
Procedia PDF Downloads 3586311 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships
Authors: Shelley Y. Hawkins
Abstract:
Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth
Procedia PDF Downloads 2426310 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 836309 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 566308 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5026307 Exploring Goal Setting by Foreign Language Learners in Virtual Exchange
Authors: Suzi M. S. Cavalari, Tim Lewis
Abstract:
Teletandem is a bilingual model of virtual exchange in which two partners from different countries( and speak different languages) meet synchronously and regularly over a period of 8 weeks to learn each other’s mother tongue (or the language of proficiency). At São Paulo State University (UNESP), participants should answer a questionnaire before starting the exchanges in which one of the questions refers to setting a goal to be accomplished with the help of the teletandem partner. In this context, the present presentation aims to examine the goal-setting activity of 79 Brazilians who participated in Portuguese-English teletandem exchanges over a period of four years (2012-2015). The theoretical background is based on goal setting and self-regulated learning theories that propose that appropriate efficient goals are focused on the learning process (not on the product) and are specific, proximal (short-term) and moderately difficult. The data set used was 79 initial questionnaires retrieved from the MulTeC (Multimodal Teletandem Corpus). Results show that only approximately 10% of goals can be considered appropriate. Features of these goals are described in relation to specificities of the teletandem context. Based on the results, three mechanisms that can help learners to set attainable goals are discussed.Keywords: foreign language learning, goal setting, teletandem, virtual exchange
Procedia PDF Downloads 1846306 Individual Differences and Elements of Inclusion: From the Perspective of Children with Special Needs
Authors: Aleksandra Ristic
Abstract:
The world changes and becomes a global village. Globalization of the last decade has caused changes and developments in the economy and technology, which also affected communication resources and brought diversities of cultural differences, values, relationships, religions, sexual identities, economic backgrounds, mindsets, perspectives, talents, and much more. Diversity without inclusion is marginalization and exclusion. Diversity gives a competitive advantage, enriches, and gives choice and power for decision-making and solutions. On a daily basis, in the role of special educators, we facilitate children’s observations of the world by improving diversity and inclusion in the school system. The subject of the research is children with special needs, expressing and noticing the differences and similarities in the world, while this is the key to their development. The subject of the research is also six pictures, which are similar and unique and represent scenes from everyone’s life. In the methodology, we conducted a theoretical review of the importance of difference, values, equality, inclusion, and exclusion and the quantitative research approach to analyze various factors by children with special needs. We used tools such as self /peer–reflection for them to think and to speak up through their own experiences of the words: difference, values, equality, inclusion, and exclusion. After that, children with special needs observed the photos and attributed those terms to them. By interpreting the results, we deepened our understanding of the power of the child's understanding of individual differences and elements of inclusion, which is based on the experiences at home, in the school environment, and in life. The children, as individuals or establishing networking groups, define those terms and, with the solutions, contribute to making the world more included and accepted.Keywords: diversity, equality, exclusion, inclusion, special needs, values
Procedia PDF Downloads 936305 Integrating Experiential Real-World Learning in Undergraduate Degrees: Maximizing Benefits and Overcoming Challenges
Authors: Anne E. Goodenough
Abstract:
One of the most important roles of higher education professionals is to ensure that graduates have excellent employment prospects. This means providing students with the skills necessary to be immediately effective in the workplace. Increasingly, universities are seeking to achieve this by moving from lecture-based and campus-delivered curricula to more varied delivery, which takes students out of their academic comfort zone and allows them to engage with, and be challenged by, real world issues. One popular approach is integration of problem-based learning (PBL) projects into curricula. However, although the potential benefits of PBL are considerable, it can be difficult to devise projects that are meaningful, such that they can be regarded as mere ‘hoop jumping’ exercises. This study examines three-way partnerships between academics, students, and external link organizations. It studied the experiences of all partners involved in different collaborative projects to identify how benefits can be maximized and challenges overcome. Focal collaborations included: (1) development of real-world modules with novel assessment whereby the organization became the ‘client’ for student consultancy work; (2) frameworks where students collected/analyzed data for link organizations in research methods modules; (3) placement-based internships and dissertations; (4) immersive fieldwork projects in novel locations; and (5) students working as partners on staff-led research with link organizations. Focus groups, questionnaires and semi-structured interviews were used to identify opportunities and barriers, while quantitative analysis of students’ grades was used to determine academic effectiveness. Common challenges identified by academics were finding suitable link organizations and devising projects that simultaneously provided education opportunities and tangible benefits. There was no ‘one size fits all’ formula for success, but careful planning and ensuring clarity of roles/responsibilities were vital. Students were very positive about collaboration projects. They identified benefits to confidence, time-keeping and communication, as well as conveying their enthusiasm when their work was of benefit to the wider community. They frequently highlighted employability opportunities that collaborative projects opened up and analysis of grades demonstrated the potential for such projects to increase attainment. Organizations generally recognized the value of project outputs, but often required considerable assistance to put the right scaffolding in place to ensure projects worked. Benefits were maximized by ensuring projects were well-designed, innovative, and challenging. Co-publication of projects in peer-reviewed journals sometimes gave additional benefits for all involved, being especially beneficial for student curriculum vitae. PBL and student projects are by no means new pedagogic approaches: the novelty here came from creating meaningful three-way partnerships between academics, students, and link organizations at all undergraduate levels. Such collaborations can allow students to make a genuine contribution to knowledge, answer real questions, solve actual problems, all while providing tangible benefits to organizations. Because projects are actually needed, students tend to engage with learning at a deep level. This enhances student experience, increases attainment, encourages development of subject-specific and transferable skills, and promotes networking opportunities. Such projects frequently rely upon students and staff working collaboratively, thereby also acting to break down the traditional teacher/learner division that is typically unhelpful in developing students as advanced learners.Keywords: higher education, employability, link organizations, innovative teaching and learning methods, interactions between enterprise and education, student experience
Procedia PDF Downloads 1836304 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 1466303 Language Learning Motivation in Mozambique: A Quantitative Study of University Students
Authors: Simao E. Luis
Abstract:
From the 1960s to the 1990s, the social-psychological framework of language attitudes that emerged from the Canadian research tradition was very influential. Integrativeness was one of the main variables in Gardner’s theory because refugees and immigrants were motivated to learn English and French to integrate into the Canadian community. Second language (L2) scholars have expressed concerns over integrativeness because it cannot explain the motivation of L2 learners in global contexts. This study aims to investigate student motivation to learn English as a foreign language in Mozambique, and to contribute to the ongoing validation of the L2 Motivational Self System theory in an under-researched country. One hundred thirty-seven (N=137) university students completed a well-established motivation questionnaire. The data were analyzed with SPSS, and descriptive statistics, correlations, multiple regressions, and MANOVA were conducted. Results show that many variables contribute to motivated learning behavior, particularly the L2 learning experience and attitudes towards the English language. Statistically significant differences were found between males and females, with males expressing more motivation to learn the English language for personal interests. Statistically significant differences were found between older and younger students, with older students reporting more vivid images of themselves as future English language users. These findings have pedagogical implications because motivational strategies are positively correlated with student motivated learning behavior. Therefore, teachers should design L2 tasks that can help students to develop their future L2 selves.Keywords: English as a foreign language, L2 motivational self system, Mozambique, university students
Procedia PDF Downloads 1196302 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity
Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan
Abstract:
Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM
Procedia PDF Downloads 1226301 How Students Use WhatsApp to Access News
Authors: Emmanuel Habiyakare
Abstract:
The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp
Procedia PDF Downloads 256300 Mathematical Games with RPG and Sci-Fi Elements to Enhance Motivation
Authors: Santiago Moll Lopez, Erica Vega Fleitas, Dolors Rosello Ferragud, Luis Manuel Sanchez Ruiz, Jose Antonio Moraño Fernandez
Abstract:
Game-based learning (GBL) is becoming popular in education. Learning through games offers students a motivating experience related to the social aspect of games. Among the significant positive outcomes are promoting positive emotions and collaboration, improving the assimilation of concepts, and creating an attractive and dynamic environment standout. This work presents a study of the design and implementation of games created with RPG Maker MZ software with a Sci-Fi storytelling environment for developing specific and transversal skills in a Mathematics subject at the Beng in Aerospace Engineering. Games were applied during regular classes and as a part of a Flip-Teaching methodology to increase the motivation and the assimilation of mathematical concepts in an engaging way. The key features of the games were the introduction of avatar design and the promotion of collaboration among students. Students' opinions and grades obtained in the activities and exams showed increased motivation and a significant improvement in their performance compared with other groups or past students' performances.Keywords: game-based learning, rol games, mathematics, science fiction
Procedia PDF Downloads 956299 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 3746298 English as a Foreign Language Teachers' Perspectives on the Workable Approaches and Challenges that Encountered them when Teaching Reading Using E-Learning
Authors: Sarah Alshehri, Messedah Alqahtani
Abstract:
Reading instruction in EFL classes is still challenging for teachers, and many students are still behind their expected level. Due to the Covid-19 pandemic, there was a shift in teaching English from face-to face to online classes. This paper will discover how the digital shift during and post pandemic has influenced English literacy instruction and what methods seem to be effective or challenging. Specifically, this paper will examine English language teachers' perspectives on the workable approaches and challenges that encountered them when teaching reading using E-Learning platform in Saudi Arabian Secondary and intermediate schools. The study explores public secondary school EFL teachers’ instructional practices and the challenges encountered when teaching reading online. Quantitative data will be collected through a 28 -item Likert type survey that will be administered to Saudi English teachers who work in public secondary and intermediate schools. The quantitative data will be analyzed using SPSS by conducting frequency distributions, descriptive statistics, reliability tests, and one-way ANOVA tests. The potential outcomes of this study will contribute to better understanding of digital literacy and technology integration in language teaching. Findings of this study can provide directions for professionals and policy makers to improve the quality of English teaching and learning. Limitations and results will be discussed, and suggestions for future directions will be offered.Keywords: EFL reading, E-learning- EFL literacy, EFL workable approaches, EFL reading instruction
Procedia PDF Downloads 1006297 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method
Authors: Rui Wu
Abstract:
In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning
Procedia PDF Downloads 1086296 Pragmatic Competence in Pakistani English Language Learners
Authors: Ghazala Kausar
Abstract:
This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.Keywords: pragmatic competence, Pakistani college learners, linguistic competence
Procedia PDF Downloads 7396295 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy
Procedia PDF Downloads 1336294 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1046293 The Experience of Gay Men Using Dating Applications in Their Emerging Adulthood
Authors: Chuang Bing-Kai, Shih Hsiang-Ju
Abstract:
Previous studies showed that emergent adults used dating applications the most since it would satisfy their needs for intimacy. It's also found that those emergent adults were mostly non-heterosexual. What’s more, in this digital era, more and more bisexuals and homosexuals choose to establish connections with others through Internet to seek a sense of belonging. However, studies rarely focused on gay men in their emergent adulthood to explore their experiences of dating applications. The purpose of this study was to explore the experience of gay men using dating applications in their emerging adulthood and to understand their self-presentations and the process of it among different relationships while interacting with others upon using dating applications. The semi-structured interview was conducted with those gay men who aged from 18 to 29, felt attracted to people with same gender physically and mentally, considered themselves homosexual from their subjective understanding and had been using dating applications for more than half a year. Research invitations were distributed with the assistance of social media platforms and LGBTQ+ friends in the community. This study adopted a qualitative research approach and applied hermeneutic phenomenology as the method to analyze the transcripts transcribed from the recorded audio, and to explore their using experiences and self-presentations while interacting with others while using dating apps. It’s expected to find out that there are four stages in the self-presentation process including establishing personal identity, self-exploration and experimentation, exploring shared interest and values, developing and maintaining connections. Plus, gay men’s motives to use dating apps play an important role in this process and thus influence how they position the apps in their life. Through this study, professional workers can better understand gay men’s considerations and strategies in their self-presentation process as well as the impact of using motives.Keywords: dating applications, emerging adulthood, gay men, hermeneutic phenomenology
Procedia PDF Downloads 496292 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools
Authors: Pei Wang
Abstract:
The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.Keywords: Chinese, inequality, parent, school, social-emotional learning
Procedia PDF Downloads 666291 From Achilles to Chris Kyle-Militarized Masculinity and Hollywood in the Post-9/11 Era
Authors: Mary M. Park
Abstract:
Hollywood has had a long and enduring history of showcasing the United States military to civilian audiences, and the portrayals of soldiers in films have had a definite impact on the civilian perception of the US military. The growing gap between the civilian population and the military in the US has led to certain stereotypes of military personnel to proliferate, especially in the area of militarized masculinity, which has often been harmful to the psychological and spiritual wellbeing of military personnel. Examining Hollywood's portrayal of soldiers can serve to enhance our understanding of how civilians may be influenced in their perception of military personnel. Moreover, it can provide clues as to how male military personnel may also be influenced by Hollywood films as they form their own military identity. The post 9/11 era has seen numerous high budget films lionizing a particular type of soldier, the 'warrior-hero', who adheres to a traditional form of hegemonic masculinity and exhibits traits such as physical strength, bravery, stoicism, and an eagerness to fight. This paper examines how the portrayal of the 'warrior-hero' perpetuates a negative stereotype that soldiers are a blend of superheroes and emotionless robots and, therefore, inherently different from civilians. This paper examines the portrayal of militarized masculinity in three of the most successful war films of the post-9/11 era; Black Hawk Down (2001), The Hurt Locker (2008), and American Sniper (2014). The characters and experiences of the soldiers depicted in these films are contrasted with the lived experiences of soldiers during the Iraq and Afghanistan wars. Further, there is an analysis of popular films depicting ancient warriors, such as Troy (2004) and 300 (2007), which were released during the early years of the War on Terror. This paper draws on the concept of hegemonic militarised masculinity by leading scholars and feminist international relations theories on militarized masculinity. This paper uses veteran testimonies collected from a range of public sources, as well as previous studies on the link between traditional masculinity and war-related mental illness. This paper concludes that the seemingly exclusive portrayal of soldiers as 'warrior-heroes' in films in the post-9/11 era is misleading and damaging to civil-military relations and that the reality of the majority of soldiers' experiences is neglected in Hollywood films. As civilians often believe they are being shown true depictions of the US military in Hollywood films, especially in films that portray real events, it is important to find the differences between the idealized fictional 'warrior-heroes' and the reality of the soldiers on the ground in the War on Terror.Keywords: civil-military relations, gender studies, militarized masculinity, social pyschology
Procedia PDF Downloads 1236290 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 826289 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 186288 The Impact of Information and Communication Technology in Education: Opportunities and Challenges
Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif
Abstract:
The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.Keywords: information and communication technology, ICT, education, ICT infrastructure, learning
Procedia PDF Downloads 1246287 Digital Literacy Transformation and Implications in Institutions of Higher Learning in Kenya
Authors: Emily Cherono Sawe, Elisha Ondieki Makori
Abstract:
Knowledge and digital economies have brought challenges and potential opportunities for universities to innovate and improve the quality of learning. Disruption technologies and information dynamics continue to transform and change the landscape in teaching, scholarship, and research activities across universities. Digital literacy is a fundamental and imperative element in higher education and training, as witnessed during the new norm. COVID-19 caused unprecedented disruption in universities, where teaching and learning depended on digital innovations and applications. Academic services and activities were provided online, including library information services. Information professionals were forced to adopt various digital platforms in order to provide information services to patrons. University libraries’ roles in fulfilling educational responsibilities continue to evolve in response to changes in pedagogy, technology, economy, society, policies, and strategies of parent institutions. Libraries are currently undergoing considerable transformational change as a result of the inclusion of a digital environment. Academic libraries have been at the forefront of providing online learning resources and online information services, as well as supporting students and staff to develop digital literacy skills via online courses, tutorials, and workshops. Digital literacy transformation and information staff are crucial elements reminiscent of the prioritization of skills and knowledge for lifelong learning. The purpose of this baseline research is to assess the implications of digital literacy transformation in institutions of higher learning in Kenya and share appropriate strategies to leverage and sustain teaching and research. Objectives include examining the leverage and preparedness of the digital literacy environment in streamlining learning in the universities, exploring and benchmarking imperative digital competence for information professionals, establishing the perception of information professionals towards digital literacy skills, and determining lessons, best practices, and strategies to accelerate digital literacy transformation for effective research and learning in the universities. The study will adopt a descriptive research design using questionnaires and document analysis as the instruments for data collection. The targeted population is librarians and information professionals, as well as academics in public and private universities teaching information literacy programmes. Data and information are to be collected through an online structured questionnaire and digital face-to-face interviews. Findings and results will provide promising lessons together with best practices and strategies to transform and change digital literacies in university libraries in Kenya.Keywords: digital literacy, digital innovations, information professionals, librarians, higher education, university libraries, digital information literacy
Procedia PDF Downloads 966286 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma
Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher
Abstract:
Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women
Procedia PDF Downloads 3516285 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 686284 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game
Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin
Abstract:
Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design
Procedia PDF Downloads 4216283 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 94