Search results for: simulation and design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15973

Search results for: simulation and design

13063 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design

Procedia PDF Downloads 216
13062 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 581
13061 NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers

Authors: César Coelho, Nikolai Wiegand

Abstract:

The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space.

Keywords: containerization, docker containers, NanoSat MO framework, satellite constellation simulation, scalability, small satellites

Procedia PDF Downloads 36
13060 Drawing, Design and Building Information Modelling (BIM): Embedding Advanced Digital Tools in the Academy Programs for Building Engineers and Architects

Authors: Vittorio Caffi, Maria Pignataro, Antonio Cosimo Devito, Marco Pesenti

Abstract:

This paper deals with the integration of advanced digital design and modelling tools and methodologies, known as Building Information Modelling, into the traditional Academy educational programs for building engineers and architects. Nowadays, the challenge the Academy has to face is to present the new tools and their features to the pupils, making sure they acquire the proper skills in order to leverage the potential they offer also for the other courses embedded in the educational curriculum. The syllabus here presented refers to the “Drawing for building engineering”, “2D and 3D laboratory” and “3D modelling” curricula of the MSc in Building Engineering of the Politecnico di Milano. Such topics, included since the first year in the MSc program, are fundamental to give the students the instruments to master the complexity of an architectural or building engineering project with digital tools, so as to represent it in its various forms.

Keywords: BIM, BIM curricula, computational design, digital modelling

Procedia PDF Downloads 662
13059 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation

Procedia PDF Downloads 340
13058 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications

Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan

Abstract:

Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.

Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell

Procedia PDF Downloads 139
13057 Enabling Citizen Participation in Urban Planning through Geospatial Gamification

Authors: Joanne F. Hayek

Abstract:

This study explores the use of gamification to promote citizen e-participation in urban planning. The research departs from a case study: the ‘Shape Your City’ web app designed and programmed by the author and presented as part of the 2021 Dubai Design Week to engage citizens in the co-creation of the future of their city through a gamified experience. The paper documents the design and development methodology of the web app and concludes with the findings of its pilot release. The case study explores the use of mobile interactive mapping, real-time data visualization, augmented reality, and machine learning as tools to enable co-planning. The paper also details the user interface design strategies employed to integrate complex cross-sector e-planning systems and make them accessible to citizens.

Keywords: gamification, co-planning, citizen e-participation, mobile interactive mapping, real-time data visualization

Procedia PDF Downloads 138
13056 Transforming Construction Companies into Full-Fledged Project-Based Organizations: Case of Ethiopia

Authors: Henok Asfaw Hailu, P. D. Rwelamila

Abstract:

Creating a suitable environment for successful projects needs a rethink of the organisational design of the parent organisations. A Project-based organisation (PBO) is a unique organizational form suitable for implementing and managing business activities around projects. A construction firm is inherently a PBO as it executes most of its activities through projects. PBO design and development require an empirical foundation. This study aimed to fill this gap by developing a conceptual model to help transform Ethiopian construction firms (ECFs) into full-fledged PBOs by assimilating the required PBO characteristics. The study used an exploratory QUAL-quant research design approach. A thematic content analysis was performed to analyse the qualitative (Interviews) research data. Means, standard deviations, frequencies, percentages, one-way ANOVA, and Pearson correlation were used to analyse the quantitative data. A transformational conceptual model was proposed and illustrated that transformation needs to begin by assessing the environment, strategic documents, and PBO characteristics. Assimilating missing PBO characteristics into ECFs is vital to realise organisations’ transformation into full-fledged PBOs.

Keywords: project-based organization, organizational design, dimensions, construction firms

Procedia PDF Downloads 70
13055 Recent Developments in the Internal Arc Test Standard IEC 62271-200 for Switchgear Assemblies

Authors: Rajaramamohanarao Chennu, S. Sudhakara Reddy, Gurudev T, Maroti

Abstract:

With the invent of recent available technology and cost optimization, the switchgear assemblies are becoming more compact and designed to operate at critical levels of thermal and dielectric stress. At the same time, the switchgear assemblies shall be designed for protection of persons, met in the event of internal arc for specified installation conditions, according to the latest available national/international standards. These standards are revising regularly for better product design and personal safety. The switchgear assemblies design shall be modified in accordance with the change in requirements in the latest edition of the standards. This paper presents the signifying changes brought in the latest edition of 62271-200:2021 and effect of these changes and the necessitated design improvements for meeting internal arc test requirements is presented by carrying out the internal arc testing experiments on the switchgear assemblies at High Power Laboratory, Central Power Research Institute, Bangalore, India.

Keywords: internal arc, switchgear assembly, high speed videography, IEC 62271-200

Procedia PDF Downloads 184
13054 Design of Control System Based On PLC and Kingview for Granulation Product Line

Authors: Mei-Feng, Yude-Fan, Min-Zhu

Abstract:

Based on PLC and kingview, this paper proposed a method that designed a set of the automatic control system according to the craft flow and demands for granulation product line. There were the main station and subordinate stations in PLC which were communicated by PROFIBUS network. PLC and computer were communicated by Ethernet network. The conversation function between human and machine was realized by kingview software, including actual time craft flows, historic report curves and product report forms. The construction of the control system, hardware collocation and software design were introduced. Besides these, PROFIBUS network frequency conversion control, the difficult points and configuration software design were elaborated. The running results showed that there were several advantages in the control system. They were high automatic degree, perfect function, perfect steady and convenient operation.

Keywords: PLC, PROFIBUS, configuration, frequency

Procedia PDF Downloads 397
13053 Behavioral Response of Dogs to Interior Environment: An Exploratory Study on Design Parameters for Designing Dog Boarding Centers in Indian Context

Authors: M. R. Akshaya, Veena Rao

Abstract:

Pet population in India is increasing phenomenally owing to the changes in urban lifestyle with increasing number of single professionals, single parents, delayed parenthood etc. The animal companionship as a means of reducing stress levels, deriving emotional support, and unconditional love provided by dogs are a few reasons attributed for increasing pet ownership. The consequence is the booming of the pet care products and dog care centers catering to the different requirements of rearing the pets. Dog care centers quite popular in tier 1 metros of India cater to the requirement of the dog owners providing space for the dogs in absence of the owner. However, it is often reported that the absence of the owner leads to destructive and exploratory behavior issues; the main being the anxiety disorders. In the above context, it becomes imperative for a designer to design dog boarding centers that help in reducing the separation anxiety in dogs keeping in mind the different interior design parameters. An exploratory research with focus group discussion is employed involving a group of dog owners, behaviorists, proprietors of day care as well as boarding centers, and veterinarians to understand their perception on the significance of different interior parameters of color, texture, ventilation, aroma therapy and acoustics as a means of reducing the stress levels in dogs sent to the boarding centers. The data collected is organized as thematic networks thus enabling the listing of the interior design parameters that needs to be considered in designing dog boarding centers. 

Keywords: behavioral response, design parameters, dog boarding centers, interior environment

Procedia PDF Downloads 198
13052 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 75
13051 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles

Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad

Abstract:

As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.

Keywords: computational methods, context-awareness, design process, smart spaces

Procedia PDF Downloads 316
13050 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.

Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation

Procedia PDF Downloads 82
13049 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer

Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji

Abstract:

The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.

Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)

Procedia PDF Downloads 520
13048 A Study on the Importance and Contributions of Transforming from OEM to ODM in Malaysian Furniture Industry

Authors: Nurul Ain Haron, Saiful Hazmi Bachek, Hafez Zainudin

Abstract:

This study is aimed to establish the importance and contribution of Original Design Manufacturing (ODM) in Malaysian Furniture Industry and to close the gap between the players in the industry. The study confirms that today’s furniture industry favor Original Equipment Manufacturing (OEM) basis. Thus, resulting in the local industry lacking the expertise of designing furniture to a state of no contest. This study method used consists of literature reviews, observation, questionnaire and sessions of interviews. The result shows that the public has from minimum to almost no knowledge of the term Original Design Manufacturing (ODM) concept and the impact towards our current future industry. The manufacturers however, prefers Original Equipment Manufacturing (OEM) concept due to its easy and fast investment returns with the need of product designing process, while the interviews carried out with the authorized council had some convincing urges of doing their part promoting the awareness through trainings and seminars. Findings show that, in the rush of archiving ODM status needs extensive cooperation from many parties that are authorized council, furniture manufacturers, designers and also the public perceptions of labeling local made goods as the black goat. The current mind set of OEM manufacturers need to be change for industry’s future. As Malaysia’s living status constantly increases, so will the demands of a better salary. If these current issues are not resolved, OEM international buyers will definitely have to shift to some other lower cost manufacturer like China or Taiwan. When vendors stopped to order, today’s OEM manufacturers will no longer exist in the future.

Keywords: design manufacturing, furniture design, original design manufacturing, original equipment manufacturing

Procedia PDF Downloads 440
13047 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 83
13046 Optimizing the Passenger Throughput at an Airport Security Checkpoint

Authors: Kun Li, Yuzheng Liu, Xiuqi Fan

Abstract:

High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.

Keywords: queue theory, security check, stochatic process, Monte Carlo simulation

Procedia PDF Downloads 196
13045 Discrete Element Method Simulation of Crushable Pumice Sand

Authors: Sayed Hessam Bahmani, Rolsndo P. Orense

Abstract:

From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.

Keywords: pumice sand, triaxial compression, simulation, particle breakage

Procedia PDF Downloads 237
13044 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 170
13043 Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers

Authors: Akshay A. Pandya, B. R. Parekh

Abstract:

This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn.

Keywords: earth fault damage, power transformer, practical simulation, SFRA traces, transformer damages

Procedia PDF Downloads 278
13042 Use of Benin Laterites for the Mix Design of Structural Concrete

Authors: Yemalin D. Agossou, Andre Lecomte, Remi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil

Abstract:

This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step, concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is, therefore, possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.

Keywords: laterites, aggregates, concretes, mix design, mechanical properties

Procedia PDF Downloads 154
13041 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing

Authors: Ahmed E. Hodaib, Muhammed A. Hashem

Abstract:

High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.

Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing

Procedia PDF Downloads 322
13040 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process

Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim

Abstract:

Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.

Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing

Procedia PDF Downloads 301
13039 Comprehensive Approach to Enhance Green Buildings in Urban Areas

Authors: M. Pena, J. Shin, H. Park

Abstract:

The main objective of any engineering activity is the development of a system that fulfills the specific economic, social or environmental needs. Green growth policies, as a system, targets to satisfy two main needs: economic and environmental growth. Cities are complex systems composed of varied characteristics such as differences in socio-environmental conditions and local affordability, among others. Thus, commissioned policies are required to address these differences and to ensure green development. A more maintainable and justifiable, resource-efficient green growth can be obtained in urban areas if multi-criteria framework of policies relevant to green buildings is designed. Reason is that, this approach fits to target the differences and unique conditions of urban areas. By following the principles of axiomatic design, this paper urges to derive a framework for the application of green buildings policies in urban areas with distinctive socio-economic and environmental characteristics. Functional requirements defined as principles to ensure green growth and design parameters are identified in each set of conditions. Design matrices are constructed for each group of urban areas. Thus, the understanding of the needs and differences for each group of urban areas and the methodology to ensure green buildings is achieved.

Keywords: axiomatic design, green growth, sustainable development, urban planning

Procedia PDF Downloads 348
13038 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 723
13037 Fetal Movement Study Using Biomimics of the Maternal March

Authors: V. Diaz, B. Pardo , D. Villegas

Abstract:

In premature births most babies have complications at birth, these complications can be reduced, if an atmosphere of relaxation is provided and is also similar to intrauterine life, for this, there are programs where their mothers lull and sway them; however, the conditions in which they do so and the way in they do it may not be the indicated. Here we describe an investigation based on the biomimics of the kinematics of human fetal movement, which consists of determining the movements that the fetus experiences and the deformations of the components that surround the fetus during a gentle walk at week 32 of the gestation stage. This research is based on a 3D model that has the anatomical structure of the pelvis, fetus, muscles, uterus and its most important supporting elements (ligaments). Normal load conditions are applied to this model according to the stage of gestation and the kinematics of a gentle walk of a pregnant mother, which focuses on the pelvic bone, this allows to receive a response from the other elements of the model. To accomplish this modeling and subsequent simulation Solidworks software was used. From this analysis, the curves that describe the movement of the fetus at three different points were obtained. Additionally, we could found the deformation of the uterus and the ligaments that support it, showing the characteristics that these tissues can have in the face of the support of the fetus. These data can be used for the construction of artifacts that help the normal development of premature infants.

Keywords: simulation, biomimic, uterine model, fetal movement study

Procedia PDF Downloads 162
13036 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities

Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu

Abstract:

This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.

Keywords: fragility, friction pendulum bearing, nonstructural component, seismic

Procedia PDF Downloads 147
13035 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 78
13034 Brand Identity Creation for Thai Halal Brands

Authors: Pibool Waijittragum

Abstract:

The purpose of this paper is to synthesize the research result of brand Identities of Thai Halal brands which related to the way of life for Thai Muslims. The results will be transforming to Thai Halal Brands packaging and label design. The expected benefit is an alternative of marketing strategy for brand building process for Halal products in Thailand. Four elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products. The results will explain some suitable approach for brand Identities of Thai Halal brands as are: 1) Benefit approach as the characteristics of the product with its benefit. The brand identity created transform to the packaging design should be clear and display a fresh product 2) Value approach as the value of products that affect to consumers’ perception. The brand identity created transform to the packaging design should be simply look and using a trustful image 3) Personality approach as the reflection of consumers thought. The brand identity created transform to the packaging design should be sincere, enjoyable, merry, flamboyant look and using a humoristic image.

Keywords: marketing strategies, brand identity, packaging and label design, Thai Halal products

Procedia PDF Downloads 431