Search results for: cluster model approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26806

Search results for: cluster model approach

23926 AIPM:An Integrator and Pull Request Matching Model in Github

Authors: Zhifang Liao, Yanbing Li, Li Xu, Yan Zhang, Xiaoping Fan, Jinsong Wu

Abstract:

Pull Request (PR) is the primary method for code contributions from the external contributors in Github. PR review is an essential part of open source software developments for maintaining the quality of software. Matching a new PR of an appropriate integrator will make the PR review more effective. However, PR and integrator matching are now organized manually in Github. To reduce this cost, we presented an AIPM model to predict highly relevant integrator of incoming PRs. AIPM uses topic model to extract topics from the PRs, and builds a one-to-one correspondence between topics and integrators. Then, AIPM finds the most suitable integrator according to the maximum entry of the topic-document distribution. On average, AIPM can reach a precision of 60%, and even in some projects, can reach a precision of 80%.

Keywords: pull Request, integrator matching, Github, open source project, topic model

Procedia PDF Downloads 282
23925 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 151
23924 Literature Review of Instructor Perceptions of the Blended Learning Approach

Authors: Syed Ahmed Hasnain

Abstract:

Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.

Keywords: blended learning, education, literature review, instructor perceptions

Procedia PDF Downloads 91
23923 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 339
23922 One or More Building Information Modeling Managers in France: The Confusion of the Kind

Authors: S. Blanchard, D. Beladjine, K. Beddiar

Abstract:

Since 2015, the arrival of BIM in the building sector in France has turned the corporation world upside down. Not only constructive practices have been impacted, but also the uses and the men who have undergone important changes. Thus, the new collaborative mode generated by the BIM and the digital model has challenged the supremacy of some construction actors because the process involves working together taking into account the needs of other contributors. New BIM tools have emerged and actors in the act of building must take ownership of them. It is in this context that under the impetus of a European directive and the French government's encouragement of new missions and job profiles have. Moreover, concurrent engineering requires that each actor can advance at the same time as the others, at the whim of the information that reaches him, and the information he has to transmit. However, in the French legal system around public procurement, things are not planned in this direction. Also, a consequent evolution must take place to adapt to the methodology. The new missions generated by the BIM in France require a good mastery of the tools and the process. Also, to meet the objectives of the BIM approach, it is possible to define a typical job profile around the BIM, adapted to the various sectors concerned. The multitude of job offers using the same terms with very different objectives and the complexity of the proposed missions motivated by our approach. In order to reinforce exchanges with professionals or specialists, we carried out a statistical study to answer this problem. Five topics are discussed around the business area: the BIM in the company, the function (business), software used and BIM missions practiced (39 items). About 1400 professionals were interviewed. These people work in companies (micro businesses, SMEs, and Groups) of construction, engineering offices or, architectural agencies. 77% of respondents have the status of employees. All participants are graduated in their trade, the majority having level 1. Most people have less than a year of experience in BIM, but some have 10 years. The results of our survey help to understand why it is not possible to define a single type of BIM Manager. Indeed, the specificities of the companies are so numerous and complex and the missions so varied, that there is not a single model for a function. On the other hand, it was possible to define 3 main professions around the BIM (Manager, Coordinator and Modeler) and 3 main missions for the BIM Manager (deployment of the method, assistance to project management and management of a project).

Keywords: BIM manager, BIM modeler, BIM coordinator, project management

Procedia PDF Downloads 153
23921 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 256
23920 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.

Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability

Procedia PDF Downloads 262
23919 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 265
23918 Simulation Model of Biosensor Based on Gold Nanoparticles

Authors: Kholod Hajo

Abstract:

In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.

Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics

Procedia PDF Downloads 241
23917 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 283
23916 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 106
23915 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 163
23914 Contact-Impact Analysis of Continuum Compliant Athletic Systems

Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede

Abstract:

Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.

Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem

Procedia PDF Downloads 456
23913 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 354
23912 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 322
23911 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 478
23910 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 55
23909 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 122
23908 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 159
23907 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 312
23906 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: flexible job shop scheduling, decision tree, priority rules, case study

Procedia PDF Downloads 344
23905 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 226
23904 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 345
23903 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 123
23902 The Effect of Technology in Improving Tourism Cluster Competitiveness

Authors: Michael Safwat Kotit Istemalek

Abstract:

In this study, a project on a small project called Zeytinseli, which plays an important role from the beginning to the end of olive oil and olive oil production, is presented with the help of tourism companies that play an important role in the tourism sector. In the study, first of all, a framework of ideas about travel agency, tourism, specific tourism agency and rural tourism was created and tourism knowledge in the modern world was emphasized. After this, the "olive", which had an important place in both mythology and the religion of God, disappeared in the field of rural tourism. Since Didim Zeytinseli is the Aydın district, accommodation prices were calculated within the scope of the project and a 15-day factory tour was given at the end of the project. It can be said that the study is an original study as it covers not only environmental and agricultural tourism but also cultural tourism and non-traditional tourism98.

Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness

Procedia PDF Downloads 15
23901 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 62
23900 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 354
23899 Systematic and Simple Guidance for Feed Forward Design in Model Predictive Control

Authors: Shukri Dughman, Anthony Rossiter

Abstract:

This paper builds on earlier work which demonstrated that Model Predictive Control (MPC) may give a poor choice of default feed forward compensator. By first demonstrating the impact of future information of target changes on the performance, this paper proposes a pragmatic method for identifying the amount of future information on the target that can be utilised effectively in both finite and infinite horizon algorithms. Numerical illustrations in MATLAB give evidence of the efficacy of the proposal.

Keywords: model predictive control, tracking control, advance knowledge, feed forward

Procedia PDF Downloads 520
23898 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model

Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia

Abstract:

Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.

Keywords: web page salience region, eye-tracker, spectral residual, visual salience

Procedia PDF Downloads 264
23897 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method

Authors: Hakiki Kheira, Belhamiti Omar

Abstract:

In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity

Procedia PDF Downloads 398