Search results for: hypobaric chamber training
1666 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques
Procedia PDF Downloads 1931665 Project Management Practices and Operational Challenges in Conflict Areas: Case Study Kewot Woreda North Shewa Zone, Amhara Region, Ethiopia
Authors: Rahel Birhane Eshetu
Abstract:
This research investigates the complex landscape of project management practices and operational challenges in conflict-affected areas, with a specific focus on Kewot Woreda in the North Shewa Zone of the Amhara region in Ethiopia. The study aims to identify essential project management methodologies, the significant operational hurdles faced, and the adaptive strategies employed by project managers in these challenging environments. Utilizing a mixed-methods approach, the research combines qualitative and quantitative data collection. Initially, a comprehensive literature review was conducted to establish a theoretical framework. This was followed by the administration of questionnaires to gather empirical data, which was then analyzed using statistical software. This sequential approach ensures a robust understanding of the context and challenges faced by project managers. The findings reveal that project managers in conflict zones encounter a range of escalating challenges. Initially, they must contend with immediate security threats and the presence of displaced populations, which significantly disrupt project initiation and execution. As projects progress, additional challenges arise, including limited access to essential resources and environmental disruptions such as natural disasters. These factors exacerbate the operational difficulties that project managers must navigate. In response to these challenges, the study highlights the necessity for project managers to implement formal project plans while simultaneously adopting adaptive strategies that evolve over time. Key adaptive strategies identified include flexible risk management frameworks, change management practices, and enhanced stakeholder engagement approaches. These strategies are crucial for maintaining project momentum and ensuring that objectives are met despite the unpredictable nature of conflict environments. The research emphasizes that structured scope management, clear documentation, and thorough requirements analysis are vital components for effectively navigating the complexities inherent in conflict-affected regions. However, the ongoing threats and logistical barriers necessitate a continuous adjustment to project management methodologies. This adaptability is not only essential for the immediate success of projects but also for fostering long-term resilience within the community. Concluding, the study offers actionable recommendations aimed at improving project management practices in conflict zones. These include the adoption of adaptive frameworks specifically tailored to the unique conditions of conflict environments and targeted training for project managers. Such training should focus on equipping managers with the skills to better address the dynamic challenges presented by conflict situations. The insights gained from this research contribute significantly to the broader field of project management, providing a practical guide for practitioners operating in high-risk areas. By emphasizing sustainable and resilient project outcomes, this study underscores the importance of adaptive management strategies in ensuring the success of projects in conflict-affected regions. The findings serve not only to enhance the understanding of project management practices in Kewot Woreda but also to inform future research and practice in similar contexts, ultimately aiming to promote stability and development in areas beset by conflict.Keywords: project management practices, operational challenges, conflict zones, adaptive strategies
Procedia PDF Downloads 241664 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness
Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta
Abstract:
Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health
Procedia PDF Downloads 5361663 Assessing Teachers’ Interaction with Children in Early Childhood Education (ECE). Cambodian Preschool Teachers’ Beliefs and Intensions
Authors: Shahid Karim, Alfredo Bautista, Kerry Lee
Abstract:
The association between teachers’ beliefs and practices has been extensively studied across the levels of education. Yet, there is a lack of context-specific evidence on the relationship between teachers’ beliefs and intentions regarding their interaction with children in early childhood education settings. Given the critical role of teachers’ beliefs in their practices, the present study examined Cambodian preschool teachers’ beliefs and intentions related to their interaction with children and what factors affect the relationship. Data was collected through a self-reported Beliefs and Intentions Questionnaire (BTQ) from preschool teachers teaching at different types of preschools in Cambodia. Four hundred nine preschool teachers teaching in public, private and community schools participated in the study through an online survey administered on Qualtrics. The quantitative analysis of the data revealed that teachers’ beliefs predict their intentions in preschool. Teachers’ teaching experience, level of education and professional training moderated the relationship between their beliefs and intentions. Differences existed between the groups of teachers teaching in different types of preschools and genders. Implications of the findings related to policy and preschool teachers’ professional development are discussed.Keywords: teacher-child interaction, teaching beliefs, teaching intentions, preschool teaching accreditations, Cambodia
Procedia PDF Downloads 991662 Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan
Authors: Wen-Chen Hwang, Yu-Hsi Yuan
Abstract:
According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01).Keywords: questionnaire survey, safety culture, t-test, media studies
Procedia PDF Downloads 3191661 Improving Music Appreciation and Narrative Abilities of Students with Intellectual Disabilities through a College Service-Learning Model
Authors: Shan-Ken Chien
Abstract:
This research aims to share the application of the Music and Narrative Curriculum developed through a college community service-learning course to a special education classroom in a local secondary school. The development of the Music and Narrative Curriculum stems from the music appreciation courses that the author has taught at the university. The curriculum structure consists of three instructional phases, each with three core literacy. This study will show the implementation of an eighteen-week general music education course, including classroom training on the university campus and four intervention music lessons in a special education classroom. Students who participated in the Music and Narrative Curriculum came from two different parts. One is twenty-five college students enrolling in Music Literacy and Community Service-Learning, and the other one is nine junior high school students with intellectual disabilities (ID) in a special education classroom. This study measures two parts. One is the effectiveness of the Music and Narrative Curriculum in applying four interventions in music lessons in a special education classroom, and the other is measuring college students' service-learning experiences and growth outcomes.Keywords: college service-learning, general music education, music literacy, narrative skills, students with special needs
Procedia PDF Downloads 861660 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 1601659 Analyzing Extended Reality Technologies for Human Space Exploration
Authors: Morgan Kuligowski, Marientina Gotsis
Abstract:
Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities.Keywords: augmented reality, extended reality, international space station, mixed reality, virtual reality
Procedia PDF Downloads 2191658 Impact of Marketing towards Behavior Intention
Authors: Sathyamangalam Rangasamy Guru Prasath
Abstract:
Due to the increasing homogeneity in product offerings, the attendant services provided are emerging as a key differentiator in the mind of the consumers. Services marketing are a sub field of marketing which covers the marketing of both goods and services. Service marketing differs from product marketing due to the face that services are intangible and typically require personal interaction with the customer. Relationships are a key factor when it comes to the marketing of services. The role of interpersonal relationships distinguishes service and product marketing in strategic vision and organizational considerations. This paper explores some of the trends in service marketing as they relate to strategic vision, operational and organizational changes, and marketing tactics. The presence of the customer in the service facility means that capacity management becomes an important driver of the firm’s profitability service marketing is a process from the organization’s point of view, but an experience from the customer’s perspective. The quality of the experience is a function of the careful design of customer service processes, adoption of standardized procedures, rigorous management of service quality, high standards of training and automation. Services marketing helps to ensure that these processes are designed from the customer’s perspective. Services marketing includes customer loyalty, managing relationships, complaint handling, improving service quality and productivity of service operations, and how to become a service leader in your industry.Keywords: customer perspective, product marketing, service marketing, rigorous management
Procedia PDF Downloads 3751657 Marketing of Global Business Systems Technologies as a Panacea to Unemployment Problem in Ogun State, Nigeria
Authors: Oluwatosin Oyewale
Abstract:
This research work seeks to take technology used for business systems as a product that requires marketing activities. Technology is invented and innovated upon in developed countries and are introduced into Africa through marketing activities. Businesses in Africa now adopt this technology for global competitiveness and hitherto unemployed but educationally advantaged people are trained in handling and utilising the technology. The aim of this study is to examine how marketing activities make this technology help in solving the unemployment problem in Africa. The areas of study are both the premier local government and the local government of the industrial haven in Ogun State, Nigeria. Area or cluster sampling technique was employed and Questionnaires were administered to two hundred respondents in the areas of study. Findings revealed that marketing has contributed to the promotion of technology; thereby making businesses globally competitive. In addition, technology has helped in reducing unemployment in developing countries. Recommendations are that training programmes that will address existing knowledge gap in technology utilisation needs to be conducted for the labour force in Africa. Moreover, adequate power supply that will aid effective utilisation of these technologies needs to be put in place by the government in these various African countries.Keywords: marketing, unemployment, problem, panacea
Procedia PDF Downloads 2231656 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4391655 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 281654 Current Account on Teaching Psychology and Career Psychology in Portuguese Higher Education
Authors: Sivia Amado Cordeiro, Bruna Rodrigues, Maria Do Ceu Taveira, Catia Marques, Iris Oliveira, Ana Daniela Silva, Cristina Costa-Lobo
Abstract:
This work intends to analyse the teaching of Psychology in Portugal and, particularly, the teaching of Career Psychology, reflecting about the changes that have occurred to date. Were analysed the educational offerings of 31 Portuguese higher education institutions, 12 public and 19 private, who teach the course of Psychology. The three degrees of study were considered, namely, bachelors, masters and doctoral. The analysis of the data focused on the curricular plans of the different degrees of studies in Psychology made available online by higher education institutions. Through them, we identified the curricular units with themes related to the teaching of Career Psychology. The results show the existence of 89 higher psychology courses in Portugal, distributed throughout the three degrees of studies. Concerning to the teaching of Career Psychology there were registered 49 curricular units with themes dedicated to this area of knowledge. There were identified 16 curricular units in the bachelor’s degree, 31 in master’s degree, and two in doctoral degree. It was observed a reduction in the number of degrees in Psychology in the last nine years in Portugal. We discuss the current situation of Psychology teaching, particularly the teaching of Career Psychology. The aim is to stimulate reflection about future perspectives of Psychology teaching, and specifically, specialized training in Psychology of Career, in Portugal.Keywords: career psychology, higher education, psychology, Portugal
Procedia PDF Downloads 3461653 Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines
Authors: Monette S. De Castro, Veneranda A. Magpantay, Christine B. Adiova, Mark D. Arboleda
Abstract:
One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province.Keywords: layer chicken farms, marketing, production system, waste management
Procedia PDF Downloads 781652 Thai Perception on Bitcoin Value
Authors: Toby Gibbs, Suwaree Yordchim
Abstract:
This research analyzes factors affecting the success of Litecoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 119 people through surveys. The results revealed four main factors affecting the success as follows: 1) Future Career training should be pursued in applied Litecoin development. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Litecoin within the community. 4) A great majority didn't know what Litecoin was. The guideline for self-reliance planning consisted of 4 aspects: 1) Development planning: by arranging meet up groups to conduct further education on Litecoin and share solutions on adoption into every day usage. Local communities need to develop awareness of the usefulness of Litecoin and share the value of Litecoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Litecoin within their departments. 3) Further research should be pursued on how Litecoin Value can improve business and tourism within Thailand. 4) Local communities should focus on developing Litecoin awareness by encouraging street vendors to accept Litecoin as another form of payment for services rendered.Keywords: bitcoin, cryptocurrency, decentralized, business implementation
Procedia PDF Downloads 2921651 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 871650 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 1881649 The Impact of Blended Learning on the Perception of High School Learners Towards Entrepreneurship
Authors: Rylyne Mande Nchu, Robertson Tengeh, Chux Iwu
Abstract:
Blended learning is a global phenomenon and is essential to many institutes of learning as an additional method of teaching that complements more traditional methods of learning. In this paper, the lack of practice of a blended learning approach to entrepreneurship education and how it impacts learners' perception of being entrepreneurial. E-learning is in its infancy within the secondary and high school sectors in South Africa. The conceptual framework of the study is based on theoretical aspects of systemic-constructivist learning implemented in an interactive online learning environment in an entrepreneurship education subject. The formative evaluation research was conducted implementing mixed methods of research (quantitative and qualitative) and it comprised a survey of high school learners and informant interviewing with entrepreneurs. Theoretical analysis of literature provides features necessary for creating interactive blended learning environments to be used in entrepreneurship education subject. Findings of the study show that learners do not always objectively evaluate their capacities. Special attention has to be paid to the development of learners’ computer literacy as well as to the activities that would bring online learning to practical training. Needs analysis shows that incorporating blended learning in entrepreneurship education may have a positive perception of entrepreneurship.Keywords: blended learning, entrepreneurship education, entrepreneurship intention, entrepreneurial skills
Procedia PDF Downloads 1161648 Enhancing Development through Music: Insights from the Tehran Conservatory’s Program for Children with Autism Spectrum Disorder
Authors: Ailin Agaahi, Nafise Daneshvar Hoseini, Shahnaz Tamizi, Mehrdad Sabet
Abstract:
This study investigates the impact of the Tehran Conservatory's music program on children with autism spectrum disorder (ASD) and their families. Recognizing music education as a beneficial therapeutic intervention, the research highlights how engagement in musical activities can foster cognitive, emotional, and social growth. Through qualitative interviews with parents of children enrolled in the program, the study explores their motivations for participation, observations of their children's progress, and assessments of the program's effectiveness. Preliminary findings indicate that the program significantly enhances social interaction, emotional regulation, and communication skills in children with ASD. Parents appreciate the program's adaptability to individual needs and the supportive training of instructors. Despite these positive outcomes, the study identifies challenges, including a lack of awareness and limited access to similar programs. The findings contribute valuable perspectives to the existing literature and suggest pathways for developing more inclusive music education initiatives, both in Iran and globally, to better support children with ASD and their families.Keywords: autism spectrum disorder, music education, therapeutic intervention, parental perspectives, social interaction
Procedia PDF Downloads 251647 The Successful Implementation of Management Accounting Innovations (MAIs) within Jordanian Industrial Sector Using Cross-Case Analysis
Authors: Mahmoud Nassar
Abstract:
This paper was designed for interviews with companies that had implemented Management Accounting Innovations (MAIs) within Jordanian Industrial Sector in full. Each company in this paper was examined as an entity to obtain an understanding of the process of MAIs adoption and implementation as well as the respondents’ opinions and perspectives of each individual company as to what are considered to be the important factors in the company. By firstly using within-case analysis has the potential to aid in-depth views of the issues and their impact on each particular company. Then, cross-case analysis was used to analyse the similarities and differences of the six companies. The study concludes that, the six companies interviewed gradually moved to using MAIs over the last ten years. The length of time required to implement the MAIs varied across the companies. Interviewees revealed several factors from both the demand and supply side that influence implementation of MAIs within the Jordanian industrial companies. Respondents mentioned and emphasised the important effect of the following factors: top management support, education about ABC concept and benefits, training programmes, shortcoming of existing cost system, competition, size of company, professional accounting bodies, management accounting journals, management accounting research and PhD degrees, and cooperation between universities and companies.Keywords: industrial sector, innovations, Jordan, management accounting
Procedia PDF Downloads 3761646 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation
Abstract:
Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient
Procedia PDF Downloads 1751645 Person-Centered Thinking as a Fundamental Approach to Improve Quality of Life
Authors: Christiane H. Kellner, Sarah Reker
Abstract:
The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centred design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like centre in Schönbrunn - a large residential complex and service provider for persons with disabilities in the outskirts of Munich - will be remodelled to open up the community to all people as well as transform social space. This strategy should lead to more equal opportunities and open the way for a much more diverse community. The research project “Index for participation development and quality of life for persons with disabilities” (TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at the Franziskuswerk Schönbrunn supports this transformation process called “Vision 2030”. In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees using person-centred planning). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one sub-project more in-depth, namely “The Person-Centred Think Tank” [Arbeitskreis Personenzentriertes Denken; PZD]. In the context of person-centred thinking (PCT), persons with disabilities are encouraged to (re)gain or retain control of their lives through the development of new choice options and the validation of individual lifestyles. PCT should thus foster and support both participation and quality of life. The project aims to establish PCT as a fundamental approach for both employees and persons with disabilities in the institution through in-house training for the staff and, subsequently, training for users. Hence, for the academic support and supervision team, the questions arising from this venture can be summed up as follows: (1) has PCT already gained a foothold at the Franziskuswerk Schönbrunn? And (2) how does it affect the interaction with persons with disabilities and how does it influence the latter’s everyday life? According to the holistic approach described above, the target groups for this study are both the staff and the users of the institution. Initially, we planned to implement the group discussion method for both target-groups. However, in the course of a pretest with persons with intellectual disabilities, it became clear that this type of interview, with hardly any external structuring, provided only limited feedback. In contrast, when the discussions were moderated, there was more interaction and dialogue between the interlocutors. Therefore, for this target-group, we introduced structured group interviews. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. We analysed and evaluated the group interviews and discussions with the help of qualitative content analysis according to Mayring in order to obtain information about users’ quality of life. We sorted out the statements relating to quality of life obtained during the group interviews into three dimensions: subjective wellbeing, self-determination and participation. Nevertheless, the majority of statements were related to subjective wellbeing and self-determination. Thus, especially the limited feedback on participation clearly demonstrates that the lives of most users do not take place beyond the confines of the institution. A number of statements highlighted the fact that PCT is anchored in the everyday interactions within the groups. However, the implementation and fostering of PCT on a broader level could not be detected and thus remain further aims of the project. The additional interviews we have planned should validate the results obtained until now and open up new perspectives.Keywords: person-centered thinking, research with persons with disabilities, residential complex and service provider, participation, self-determination.
Procedia PDF Downloads 3261644 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 861643 An Analysis of Digital Forensic Laboratory Development among Malaysia’s Law Enforcement Agencies
Authors: Sarah K. Taylor, Miratun M. Saharuddin, Zabri A. Talib
Abstract:
Cybercrime is on the rise, and yet many Law Enforcement Agencies (LEAs) in Malaysia have no Digital Forensics Laboratory (DFL) to assist them in the attrition and analysis of digital evidence. From the estimated number of 30 LEAs in Malaysia, sadly, only eight of them owned a DFL. All of the DFLs are concentrated in the capital of Malaysia and none at the state level. LEAs are still depending on the national DFL (CyberSecurity Malaysia) even for simple and straightforward cases. A survey was conducted among LEAs in Malaysia owning a DFL to understand their history of establishing the DFL, the challenges that they faced and the significance of the DFL to their case investigation. The results showed that the while some LEAs faced no challenge in establishing a DFL, some of them took seven to 10 years to do so. The reason was due to the difficulty in convincing their management because of the high costs involved. The results also revealed that with the establishment of a DFL, LEAs were better able to get faster forensic result and to meet agency’s timeline expectation. It is also found that LEAs were also able to get more meaningful forensic results on cases that require niche expertise, compared to sending off cases to the national DFL. Other than that, cases are getting more complex, and hence, a continuous stream of budget for equipment and training is inevitable. The result derived from the study is hoped to be used by other LEAs in justifying to their management the benefits of establishing an in-house DFL.Keywords: digital evidence, digital forensics, digital forensics laboratory, law enforcement agency
Procedia PDF Downloads 1781642 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1581641 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 5531640 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4561639 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 2021638 One-Shot Text Classification with Multilingual-BERT
Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao
Abstract:
Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.Keywords: OSML, BERT, text classification, one shot
Procedia PDF Downloads 1051637 Development and Validation of the 'Short Form BASIC Scale' Psychotic Tendencies Subscale
Authors: Chia-Chun Wu, Ying-Yao Cheng
Abstract:
The purpose of this study was developing the 'short-form BASIC scale' psychotic tendencies subscale so as to provide a more efficient, economical and effective way to assess the mental health of recruits. 1749 students from Naval Recruit Training Center participated in this study. The multidimensional constructs of psychotic tendencies subscale include four dimensions: schizophrenic tendencies, manic tendencies, depression tendencies, and suicidal ideation. We cut down the 36-item psychotic tendencies subscale to 25 items by using multidimension Rasch techniques. They were applied to assess model-data fit and to provide the validity evidence of the short form BASIC scale of psychotic tendencies subscale. The person separation reliabilities of the measures from four dimensions were .70, .67, .74 and .57, respectively. In addition, there is a notable correlation between the length version and short version of schizophrenic tendencies (scaled .89), manic tendencies (.96), depression tendencies (.97) and suicidal ideation (.97). The results have indicated that the development of the study of short-form scale sufficient to replace the original scale. Therefore, it is suggested that short-form basic scale is used to assess the mental health with participants being more willing to answer questions to ensure the validation of assessments.Keywords: BASIC scale, military, Rasch analysis, short-form scale
Procedia PDF Downloads 366